Skip to main content
SHARE
Publication

Data-Driven Approaches for Bead Geometry Prediction Via Melt Pool Monitoring

Publication Type
Journal
Journal Name
Journal of Manufacturing Science and Engineering
Publication Date
Volume
145
Issue
9

In the realm of additive manufacturing, the selection of process parameters to avoid over and under deposition entails a time-consuming and resource-intensive trial-and-error approach. Given the distinct characteristics of each part geometry, there is a pressing need for advancing real-time process monitoring and control to ensure consistent and reliable part dimensional accuracy. This research shows that support vector regression (SVR) and convolutional neural network (CNN) models offer a promising solution for real-time process control due to the models’ abilities to recognize complex, non-linear patterns with high accuracy. A novel experiment was designed to compare the performance of SVR and CNN models to indirectly detect bead height from a coaxial image of a melt pool from a single-layer, single bead build. The study showed that both SVR and CNN models trained on melt pool data collected from a coaxial optical camera can accurately predict the bead height with a mean absolute percentage error of 3.67% and 3.68%, respectively.