Abstract
With the increasing penetration level of renewable sources and power electronics loads in modern power systems, accurate and computationally efficient models are needed. Black-box model (BBM) could be a useful method in such systems. However, not very extensive research efforts have been made for power electronics BBM so far, and existing works mostly focus on steady-state operation, neglecting the important transient behaviors such as load transients, voltage transients, and faults. This paper presents a comparative study of three commonly used nonlinear BBM approaches for transient behaviors of power electronics converters. Comparison methods are proposed, and the evaluations are conducted under different transients using a grid-connected single-phase photovoltaic inverter. The findings of this study provide valuable references for further feasibility investigations on implementing BBMs in large-scale power electronics-rich power systems.