Skip to main content
SHARE
Publication

CO2 balance of boreal, temperate, and tropical forests derived from a global database...

Publication Type
Journal
Journal Name
Global Change Biology
Publication Date
Page Numbers
2509 to 2537
Volume
13
Issue
12

Forests sequester large amounts of atmospheric carbon. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties have been and are being collected at many sites around the world, but synthesis of these data is still sparse. To facilitate synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age) as well as ancillary site information such as management regime, climate and soil characteristics. This can be used to: quantify global, regional to biome-specific carbon-budgets, to re-examine established relationships, test emerging hypotheses about ecosystem functioning (e.g. a constant NEP to GPP), and provide benchmarks for model evaluations. Our synthesis highlighted that globally, gross primary production of forests benefited from higher temperatures and precipitation whereas net primary production saturated beyond a threshold of 1500 mm precipitation or a mean annual temperature of 10�C. The global pattern in NEP was found insensitive to climate and appears to be mainly determined by non-climatic conditions such as successional stage, management, site history and site disturbance. At the biome level, only the carbon fluxes in temperate humid evergreen and temperate humid deciduous forests were sufficiently robust. All other biomes still need further study to reduce uncertainties in their carbon balance. Carbon budgets of boreal semi-arid and tropical semi-arid forests would benefit most from additional data inputs. Closing the CO2-balances of specific biomes required the introduction of closure terms. These closure terms were substantial for all biomes and suggested that to better close carbon balances, more data are needed especially on respiratory processes, advection and on non-CO2 carbon fluxes.