Skip to main content
SHARE
Publication

Bayesian optimization of generalized data...

Publication Type
Conference Paper
Journal Name
European Journal of Physics N (EPJ N): Nuclear Sciences & Technologies
Publication Date
Page Number
30
Volume
4
Conference Name
4th International Workshop on Nuclear Data Covariances
Conference Location
Aix en Provence, France
Conference Sponsor
CEA Cadarache and Nuclear Energy Agency
Conference Date
-

Direct application of Bayes' theorem to generalized data yields a posterior probability distribution function (PDF) that is a product of a prior PDF of generalized data and a likelihood function, where generalized data consists of model parameters, measured data, and model defect data. The prior PDF of generalized data is defined by prior expectation values and a prior covariance matrix of generalized data that naturally includes covariance between any two components of generalized data. A set of constraints imposed on the posterior expectation values and covariances of generalized data via a given model is formally solved by the method of Lagrange multipliers. Posterior expectation values of the constraints and their covariance matrix are conventionally set to zero, leading to a likelihood function that is a Dirac delta function of the constraining equation. It is shown that setting constraints to values other than zero is analogous to introducing a model defect. Since posterior expectation values of any function of generalized data are integrals of that function over all generalized data weighted by the posterior PDF, all elements of generalized data may be viewed as nuisance parameters marginalized by this integration. One simple form of posterior PDF is obtained when the prior PDF and the likelihood function are normal PDFs. For linear models without a defect this PDF becomes equivalent to constrained least squares (CLS) method, that is, the χ2 minimization method.