For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For contributions to advanced control systems for nuclear reactor, including development of control-system and plant protection technologies that permit automated start-up and operation; and to analysis techniques that have led to better understanding of reactor dynamics.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.
For contributions to the development of new concepts and advanced systems for power generation and conversion, through innovative designs of nuclear reactors for aircraft propulsion and space auxiliary power and concepts for thermonuclear fusion reactor power plants
For original studies of the genetic effects of radiation in mammals. A world authority on mammalian mutagenesis, he and co-workers provided the experimental basis for estimating the genetic hazards of radiation to man and for the corresponding recommendations of national and international standards bodies
For research extending the theoretical description of direct nuclear reactions and nuclear structure, as one of the first theorists to implement the much more refined and detailed treatment of experimental data made possible by computers