
Strain developed during the coalescence of growing 2D crystals was shown to induce the nucleation of twisted bilayers with predictable twist angles. This work provides a pathway to synthetically control stacking angles in 2D heterostructures for
Strain developed during the coalescence of growing 2D crystals was shown to induce the nucleation of twisted bilayers with predictable twist angles. This work provides a pathway to synthetically control stacking angles in 2D heterostructures for
Neutron scattering and atomic dynamics simulations reveal that complex crystals can conduct heat like a glass through diffusive quantum hopping. The revealed strategies will enable the down-tuning
Through computer simulations of a microscopic model for a skyrmion crystal, theoreticians discovered an unexpectedly complex spin dynamics stabilized by Dzyaloshinskii-Moriya interaction. Understanding spin dynamics is of fundamental importance to
Neutron scattering experiments on a honeycomb lattice magnet revealed a unique signature of quantum magnetism. These results showed how inelastic neutron scattering can be used to detect and decode quantum magnetism and distinguish truly quantum
Researchers demonstrated that superlattices of alternating TiO2 and VO2 layers dramatically expand the tunability range of the metal–insulator transition (MIT) in the strongly correlated VO2.1 The demonstration of a wide tunability range for the e
Researchers revealed atomic-level correlated motion of water molecules at the crucial picosecond timescale to evaluate the dynamic nature of the liquid by using coherent X-ray scattering. This research could revolutionize understanding and control
Novel defect control and chemical doping strategies are discovered to suppress the detrimental bulk conduction in the antiferromagnetic topological insulators MnBi2Te4 and MnBi4Te7. The results of this wo
Researchers proposed a new strategy to explore various quantum phases and used it to predict the first room-temperature quantum anomalous Hall effect in a 2D post-transition metal system.
Neutron scattering experiments revealed how emergent multi-spin clusters suppress conventional magnetic ordering in a frustrated pyrochlore magnet
Researchers proposed a new concept for transient negative capacitance (NC) based on inverse polarization switching against the electric field in layered van der Waals (vdW) ferrielectric CuInP2S6.