
Evaluate the historical performance and future projections of compound heatwave and drought (CHD) extremes across the contiguous United States using CMIP6 global climate models, providing insights for regional adaptation strategies in response to
Evaluate the historical performance and future projections of compound heatwave and drought (CHD) extremes across the contiguous United States using CMIP6 global climate models, providing insights for regional adaptation strategies in response to
The objective of this study is to explore and analyze the spatial patterning of sociodemographic disparities in extreme heat exposure across multiple scales within the Conterminous United States (CONUS).
We present an intercomparison of a suite of high-resolution downscaled climate projections based on a six-member General Climate Models (GCM) ensemble from the 6th Phase of Coupled Models Intercomparison Project (CMIP6).
Multimodel ensembling improves predictions and considers model uncertainties. In this study, we present a Bayesian Neural Network (BNN) ensemble approach for large-scale precipitation predictions based on a set of climate models.