Skip to main content

Computational Chemical and Materials Sciences

The Computational Chemical and Materials Sciences (CCMS) group develops and applies modern computational and mathematical capabilities for the understanding, prediction and control of chemical and physical processes ranging from the molecular to the nanoscale, to full-size engineering applications, using a multidisplinary approach that integrates chemistry, physics, materials science, mechanical engineering, and biology. Additionally, the CCMS group is the core of the Nanomaterials Theory Institute at the Center for Nanophase Materials Sciences, where work is focused toward using theory and multiscale simulations and modeling for providing interpretive and predictive frameworks for virtual design and understanding of novel nanoscale materials with specific and/or emergent properties.


  • Ab-initio materials simulation
  • Applied mathematics
  • Bio-nano science
  • Computational biology and biophysics
  • Correlated electron materials
  • Energy storage materials
  • Engineering and transportation technology
  • Magnetisim and magnetrotransport in nanostructures
  • Mechanics of materials
  • Mesoscale models of deformation and dislocation
  • Nanoscale charge transport
  • Soft materials (polymers)
  • Superconductivity