Shih-Chieh Kao

Shih-Chieh Kao

Senior Research Scientist

Bio

Dr. Shih-Chieh Kao is a Senior Research Scientist and Team Leader of the Hydrologic Systems Analysis Team within the Environmental Science Division at Oak Ridge National Laboratory. His areas of research include hydrologic modeling, hydro-climate impact assessment, hydro-meteorological extremes, streamflow availability, river network, and hydropower resource evaluation. He has been serving as the principal investigator of two Department of Energy Water Power Program projects – “National Hydropower Asset Assessment Program (NHAAP)” and “Effects of Climate Change on Federal Hydropower – SECURE Water Act Section 9505 Water Use Analysis” since 2011.

Prior to ORNL, Kao was a postdoctoral research associate at Purdue University, where he earned his doctorate in Civil Engineering in 2008. His dissertation, “Multivariate Statistical Analysis of Indiana Hydrologic Data,” was awarded the 2008 Purdue Civil Engineering Best Dissertation. Kao has been a frequent reviewer for over 20 scientific/engineering journals. He is a member the ASCE Environmental and Water Resources Institute’s Hydrological Technical Committee on hydroclimate and probable maximum precipitation. Kao received the Outstanding Reviewer Award from Journal of Hydrologic Engineering at 2009, and the Statistical Hydrology Best Paper Award from International Commission on Statistical Hydrology at 2013.

Awards

April 2014 - Significant Event Award – “National Hydropower Asset Assessment Program (NHAAP)”, Oak Ridge National Laboratory.
Oct 2013 - Statistical Hydrology Best Paper Award, International Commission on Statistical Hydrology, International Association of Hydrological Sciences.
Jan 2010 - Outstanding Reviewer Award, Journal of Hydrologic Engineering, American Society of Civil Engineers.
Oct 2008 - Civil Engineering Best Dissertation Award, Purdue University.

Publications

[33] Gangrade, S., S.-C. Kao, B. S. Naz, D. Rastogi, M. Ashfaq, N. Singh, and B. L. Preston (2018), Sensitivity of Probable Maximum Flood in a Changing Environment, Water Resour. Res., accepted.
[32] Forbes, W., J. Mao, M. Jin, S.-C. Kao, W. Fu, X. Shi, D. Ricciuto, P. Thornton, A. Ribes, Y. Wang, S. Piao, T. Zhao, C. Schwalm, F. Hoffman, J. Fisher, A. Ito, B. Poulter, Y. Fang, H. Tian, A. Jain, and D. Hayes (2018), Contribution of Environmental Forcings to US Runoff Changes for the Period 1950-2010, Environ. Res. Lett., in press, doi:10.1088/1748-9326/aabb41.
[31] Naz, B. S., S.-C. Kao, M. Ashfaq, H. Gao, D. Rastogi, and S. Gangrade (2018), Effects of Climate Change on Streamflow Extremes and Implications for Reservoir Inflow in the United States, J. Hydrol., 556, 359-370, doi:10.1016/j.jhydrol.2017.11.027.
[30] Rastogi, D., S.-C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, N. Singh, and V. G. Anantharaj (2017), Effects of Climate Change on Probable Maximum Precipitation: A Sensitivity Study over the Alabama-Coosa-Tallapoosa River Basin, J. Geophys. Res.-Atmos., 122, 4808-4828, doi:10.1002/2016JD026001.
[29] Zhao, G., H. Gao, B. S. Naz, S.-C. Kao, and N. Voisin (2016), Integrating a Reservoir Regulation Scheme into a Spatially Distributed Hydrological Model, Adv. Water Resour., 98, 16–31, doi:10.1016/j.advwatres.2016.10.014.
[28] Pagán, B., M. Ashfaq, D. Rastogi, D. Kendall, S.-C. Kao, B. S. Naz, R. Mei, and J. S. Pal (2016), Extreme Hydrological Changes in the Southwestern U.S. Drive Reductions in Water Supply to Southern California by Mid Century, Environ. Res. Lett., 11(9), 094026, doi:10.1088/1748-9326/11/9/094026.
[27] Ashfaq, M., D. Rastogi, R. Mei, S.-C. Kao, S. Gangrade, B. S. Naz, and D. Touma (2016), High-resolution Ensemble Projections of Near-term Regional Climate over the Continental United States, J. Geophys. Res.–Atmos., 121, 9943–9963, doi:10.1002/2016JD025285.
[26] Mani, A., F. T.-C. Tsai, S.-C. Kao, B. S. Naz, M. Ashfaq, and D. Rastogi (2016), Conjunctive Management of Surface and Groundwater Resources under Projected Future Climate Change Scenarios, J. Hydrol., 560, 397–411, doi:10.1016/j.jhydrol.2016.06.021.
[25] Naz, B. S., S.-C. Kao, M. Ashfaq, D. Rastogi, R. Mei, and L. C. Bowling (2016), Regional Hydrologic Response to Climate Change in the Conterminous United States Using High-resolution Hydroclimate Simulations, Global Planet. Change, 143, 100–117, doi:10.1016/j.gloplacha.2016.06.003.
[24] McManamay, R. A., C. Oigbokie, S.-C. Kao, and M. S. Bevelhimer (2016), Classification of US Hydropower Dams by their Modes of Operation, River Res. Appl., doi:10.1002/rra.3004.
[23] Pasha, M. F. K., D. Yeasmin, S. Saetern, M. Yang, S.-C. Kao, and B. T. Smith (2016), Uncertainty Analysis in Geospatial Merit Matrix-Based Hydropower Resource Assessment, J. Water Res. Pl., 142(4), 06016001, doi:10.1061/(ASCE)WR.1943-5452.0000599.
[22] Pasha, M. F. K., M. Yang, D. Yeasmin, S. Saetern, S.-C. Kao, and B. T. Smith (2016), Identifying High-Power-Density Stream-Reaches through Refined Geospatial Resolution in Hydropower Resource Assessment, J. Water Res. Pl., 06016001, doi:10.1061/(ASCE)WR.1943-5452.0000599.
[21] Touma, D., M. Ashfaq, M. Nayak, S.-C. Kao, and N. S. Diffenbaugh (2015), A Multi-model and Multi-index Evaluation of Drought Characteristics in the 21st Century, J. Hydrol., 526, 196–207, doi:10.1016/j.jhydrol.2014.12.011.
[20] Kao, S.-C., M. J. Sale, M. Ashfaq, R. Uria Martinez, D. P. Kaiser, Y. Wei, and N. S. Diffenbaugh (2015), Projecting Changes in Annual Hydropower Generation Using Regional Runoff Data: An Assessment of the United States Federal Hydropower Plants, Energy, 80, 239–250, doi:10.1016/j.energy.2014.11.066.
[19] McManamay, R. A., N. Samu, S.-C. Kao, M. S. Bevelhimer, and S. C. Hetrick (2015), A Multi-scale Spatial Approach to Address Environmental Effects of Small Hydropower Development, Environ. Manage., 55(1), 217–243, doi:10.1007/s00267-014-0371-2..
[18] Pasha, M. F. K., D. Yeasmin, S.-C. Kao, B. Hadjerioua, Y. Wei, and B. T. Smith (2014), Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix–Based Geospatial Algorithm, J. Water Res. Pl., 140(8), 04014016, doi:10.1061/(ASCE)WR.1943-5452.0000429.
[17] McManamay, R. A., M. S. Bevelhimer, and S.-C. Kao (2014), Updating the US Hydrologic Classification: An Approach to Clustering and Stratifying Ecohydrologic Data, Ecohydrology, 7(3), 903–926, doi:10.1002/eco.1410.
[16] Oubeidillah, A. A., S.-C. Kao, M. Ashfaq, B. S. Naz, and G. Tootle (2014), A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US, Hydrol. Earth Syst. Sci., 18, 67–84, doi: 10.5194/hess-18-67-2014.
[15] Ashfaq, M., S. Ghosh, S.-C. Kao, L. C. Bowling, P. Mote, D. Touma, S. A. Rauscher, and N. S. Diffenbaugh (2013), Near-term Acceleration of Hydroclimatic Change in the Western U.S., J. Geophys. Res.–Atmos., 118, 10,676–10,693, doi:10.1002/jgrd.50816.
[14] Kao, S.-C., H. K. Kim, C. Liu, X. Cui, and B. L. Bhaduri (2012), Dependence-Preserving Approach to Synthesizing Household Characteristics, Transport. Res. Record, 2302, 192–200, doi:10.3141/2302-21.
[13] Cui, X., H. K. Kim, C. Liu, S.-C. Kao, and B. L. Bhaduri (2012), Simulating the Household Plug-in Hybrid Electric Vehicle Distribution and its Electric Distribution Network Impacts, Transport. Res. D–TR. E., 17, 548–554, doi:10.1016/ j.trd.2012.05.011.
[12] Kao, S.-C., and N.-B. Chang (2012), Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee, J. Hydrol. Eng., 17(7), 790–799, doi:10.1061/(ASCE)HE.1943-5584.0000477.
[11] Ghosh, S., D. Das, S.-C. Kao, and A. R. Ganguly (2012), Lack of Uniform Trends but Increasing Spatial Variability in Observed Indian Rainfall Extremes, Nature Climate Change, 2, 86–91, doi:10.1038/nclimate1327.
[10] Kao, S.-C., and A. R. Ganguly (2011), Intensity, Duration, and Frequency of Precipitation Extremes under 21st-century Warming Scenarios, J. Geophys. Res.–Atmos., 116, D16119, doi:10.1029/2010JD015529.
[9] Kao, S.-C., and R. S. Govindaraju (2010), Reply to Comment by T. P. Hutchinson on "Trivariate Statistical Analysis of Extreme Rainfall Events via the Plackett Family of Copulas", Water Resour. Res., 46, W04802, doi:10.1029/2009WR008774.
[8] Kao, S.-C., and R. S. Govindaraju (2010), A Copula-based Joint Deficit Index for Droughts, J. Hydrol., 380, 121–134, doi:10.1016/j.jhydrol.2009.10.029.
[7] Kao, S.-C., T. P. Chan, R. Sultana, T. Konopka, T. Cooper, B. Partridge, and R. S. Govindaraju (2009), Hydrologic and Environmental Performance of a Subsurface Constructed Wetland at a Highway Rest Area: A Case Study, Water Qual. Expo. Health, 1, 35–48, doi:10.1007/s12403-009-0004-9.
[6] Kao, S.-C., and R. S. Govindaraju (2008), Trivariate Statistical Analysis of Extreme Rainfall Events via Plackett Family of Copulas, Water Resour. Res., 44, W02415, doi:10.1029/2007WR006261
[5] Kao, S.-C., and A. R. Rao (2008), At-Site Based Evaluation of Rainfall Estimates for Indiana, J. Hydrol. Eng., 13(3), 184–188, doi:10.1061/(ASCE)1084-0699(2008)13:3(184).
[4] Kao, S.-C. and R. S. Govindaraju (2007), A Bivariate Frequency Analysis of Extreme Rainfall with Implications for Design, J. Geophys. Res.–Atmos., 112, D13119, doi: 10.1029/2007JD008522.
[3] Kao, S.-C. and R. S. Govindaraju (2007), Probabilistic Structure of Storm Surface Runoff Considering the Dependence between Average Intensity and Storm Duration of Rainfall Events, Water Resour. Res., 43, W06410, doi:10.1029/ 2006WR005564.
[2] Rao, A. R. and S.-C. Kao (2007), Discussion of "Updated Precipitation Frequency Estimates for Kansas City: Comparison with TP-40 and HYDRO-35" by C. Bryan Young and Bruce M. McEnroe, J. Hydrol. Eng., 12(6), 694–699, doi:10.1061/(ASCE)1084-0699(2007)12:6(694)
[1] Lin, G.-F., L.-H. Chen, and S.-C. Kao (2005), Development of Regional Design Hyetographs, Hydrol. Process, 19, 937–946, doi:10.1002/hyp.5550.

User Facility