no-image silhouette

Easwaran N Krishnan

Associate Research and Development Staff

Dr. Easwaran Krishnan is an Associate R&D Staff member at ORNL. He completed his PhD and post doctorate from the University of Saskatchewan, Canada. He worked on several projects related to air-to-air energy exchangers, building energy recovery and indoor air quality funded by NSERC Canada. He has expertise in the development and commissioning of heat exchanger test facilities, calibration, measurements, and analysis of thermal systems used in HVAC applications. Dr. Krishnan’s research interests include experimental heat and mass transfer in HVAC systems and indoor air quality, and he is supporting ORNL’s State and Community Energy Programs (SCEP), energy efficiency and Indoor air quality related projects.

  1. E.N. Krishnan, H. Ramin, A. Gurubalan, C.J. Simonson, Experimental methods to determine the performance of desiccant coated fixed-bed regenerators (FBRs), International Journal of Heat and Mass Transfer. 182 (2022) 121909. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121909.
  2. E.N. Krishnan, H. Ramin, A. Gurubalan, W.O. Alabi, C.J. Simonson, Methodologies for predicting the effectiveness of full-scale fixed-bed regenerators from small-scale test data, ASME Journal of Thermal Science and Engineering Applications. 13 (2021) 1–34. https://doi.org/10.1115/1.4050226.
  3. E.N. Krishnan, H. Ramin, A. Guruabalan, C.J. Simonson, Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages, International Communications in Heat and Mass Transfer. 122 (2021) 105160. https://doi.org/10.1016/j.icheatmasstransfer.2021.105160.
  4. E.N. Krishnan, H. Ramin, A. Gurubalan, C.J. Simonson, Influence of plate geometry on thermohydraulic performance of fixed-bed regenerators, Journal of Fluid Flow, Heat and Mass Transfer. 8 (2021). https://doi.org/10.11159/jffhmt.2021.018.
  5. E.N. Krishnan, H. Ramin, M. Shakouri, L.D. Wilson, C.J. Simonson, Development of a small-scale test facility for effectiveness evaluation of fixed-bed regenerators, Applied Thermal Engineering. 174 (2020) 115263. https://doi.org/10.1016/j.applthermaleng.2020.115263.
  6. E.N. Krishnan, N. Balasundaran, R. J Thomas, Thermodynamic analysis of an integrated gas turbine power plant utilizing cold exergy of LNG, Journal of Mechanical Engineering and Sciences. 12 (2018). 10.15282/jmes.12.3.2018.14.0345 
  7. M. Torabi, E.N. Krishnan, J. Soltan, C.J Simonson,  A review of experimental studies on contaminant transfer in energy exchangers (rp-1780)Science and Technology for the Built Environment. 28:10, 1293-1311 (2022) https://doi.org/10.1080/23744731.2022.2113705 
  8. H. Ramin, E.N. Krishnan, A. Gurubalan, C.J. Simonson, Transient operation of sensible fixed-bed regenerators, ASME Journal of Thermal Science and Engineering Applications (2022). https://doi.org/10.1115/1.4053486 
  9. H. Ramin, E.N. Krishnan, A. Gurubalan, W.O. Alabi, C.J. Simonson, A transient numerical model for sensible fixed-bed regenerator in HVAC applications, International Journal of Heat and Mass Transfer. 177 (2021) 121550. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121550.
  10. W.O. Alabi, E.N. Krishnan, A.H. Karoyo, L. Dehabadi, L.D. Wilson, C.J. Simonson Suitability of bio-desiccants for energy wheels in HVAC applications. Building and Environment. 206 (2021), 108369. https://doi.org/10.1016/j.buildenv.2021.108369.
  11. H. Ramin, E.N. Krishnan, G. Annadurai, C.J. Simonson, The effect of transient characteristics on optimization of fixed-bed regenerators (FBRs), ASME Journal of Thermal Science and Engineering Applications. 14 (2021) 051008. https://doi.org/10.1115/1.4051725.
  12. H. Ramin, E.N. Krishnan, G. Annadurai, W.O. Alabi, C.J. Simonson, Transient sensor errors and their impact on fixed-bed regenerator (FBR) testing standards, Science and Technology for the Built Environment. 27 (2021) 656–678. https://doi.org/10.1080/23744731.2020.1846428.
  13. W.O. Alabi, A.H. Karoyo, E.N. Krishnan, L. Dehabadi, L.D. Wilson, C.J. Simonson, Comparison of the moisture adsorption properties of starch particles and flax fiber coatings for energy wheel applications, ACS Omega. 5 (2020) 9529–9539. https://doi.org/10.1021/acsomega.0c00762.
  14. M. Shakouri, E.N. Krishnan, A.H. Karoyo, L. Dehabadi, L.D. Wilson, C.J. Simonson, Water vapor adsorption–desorption behavior of surfactant-coated starch particles for commercial energy wheels, ACS Omega. 4 (2019) 14378–14389. https://doi.org/10.1021/acsomega.9b00755.
  15. M. Shakouri, E.N. Krishnan, L. Dehabadi, A.H. Karoyo, C.J. Simonson, L.D. Wilson, Vapor adsorption transient test facility for dehumidification and desorption studies, International Journal of Technology. 9 (2018) 1092–1102. https://doi.org/https://doi.org/10.14716/ijtech.v9i6.230.