Functional Materials for Energy

The concept of functional materials for energy occupies a very prominent position in ORNL’s research and more broadly the scientific research sponsored by DOE’s Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of functionality is seen in advanced membrane materials that save energy by enhancing the efficiency of existing energy-intensive processes or offer entirely new routes for, e.g., separation processes, carbon dioxide capture or environmental remediation. A third type of functionality is seen in energy-responsive materials, which exhibit a chemical, mechanical, structural or electronic response to some form of energy stimulus that can be utilized for, e.g., sensing, actuation or signaling.

ORNL has extensive research programs into functional materials for energy ranging from basic science through to applied programs. Major areas of activity include (i) porous membranes for separation and environmental cleanup; (ii) electrolyte materials for selective ionic transport in batteries; (iii) organic and polymeric materials for electronic and photovoltaic applications; (iv) superconducting materials; (v) ferroelectric materials; (vi) thermoelectric materials and (vii) new low-energy synthetic routes to technologically important materials. A particular area of strength is in the synthesis and processing of new functional forms of carbon: from the amazing variety of nanostructured carbon materials to “foam” carbon insulators to carbon fiber for lightweight structural materials. It also offers capabilities in these research areas to facilitate science of external users from academia or industry through its user facilities in high performance computing, neutron science and nanoscience.

Research Highlights

A scalable route to self-sensing composites

Next-generation fiber-reinforced composites may monitor their own structural health, detect damage, and issue early warnings. When enough electrically conductive fiber is embedded in a polymer matrix, the bulk composite becomes electrically conductive. Semiconducting...

Key to mechanical reinforcement of glassy polymer nanocomposites has been unraveled

Scientists have unraveled details of the mechanism of mechanical reinforcement in glassy polymer nanocomposites.1 Measurements in the interfacial layer ~2–4 nm around nanoparticles revealed that Young’s modulus, which defines the relationship between stress and strain in a...

Quantum critical behavior in a concentrated solid solution: a new twist on structural alloys

Concentrated transition metal alloys with the formula NiCoCrx, with x≈1, and a simple cubic crystal structure, display transport, magnetic and thermodynamic signatures exhibited by more structurally complex compounds near a quantum critical point (QCP). These alloys provide...