Skip to main content

Surface plasmon enhanced fast electron emission from metallised fibre optic nanotips...

Publication Type
Journal Name
New Journal of Physics
Publication Date
Page Number

Physical mechanisms of electron emission from fibre optic nanotips, namely, tunnelling, multi-photon, and thermionic emission, either prevent fast switching or require intense laser fields. Time-resolved electron emission from nano-sized sources finds applications ranging from material characterisation to fundamental studies of quantum coherence. We present a nano-sized electron source capable of fast-switching (≤1 ns) that can be driven with low-power femtosecond lasers. The physical mechanism that can explain emission at low laser power is surface plasmon enhanced above-threshold photoemission. An electron emission peak is observed and provides support for resonant plasmonic excitation. The electron source is a metal-coated optical fibre tapered into a nano-sized tip. The fibre is flexible and back illuminated facilitating ease of positioning. The source operates with a few nJ per laser pulse, making this a versatile emitter that enables nanometrology, multisource electron-lithography and scanning probe microscopy.