Skip to main content
SHARE
Publication

Predicting the Atlantic Meridional Overturning Circulation using subsurface and surface fingerprints...

Publication Type
Journal
Journal Name
Deep Sea Research Part II: Topical Studies in Oceanography
Publication Date
Page Numbers
1895 to 1903
Volume
58
Issue
17-18

Recent studies have suggested that the leading modes of North Atlantic subsurface temperature (Tsub) and sea surface height (SSH) anomalies are induced by Atlantic meridional overturning circulation (AMOC) variations and can be used as fingerprints of AMOC variability. Based on these fingerprints of the AMOC in the GFDL CM2.1 coupled climate model, a linear statistical predictive model of observed fingerprints of AMOC variability is developed in this study. The statistical model predicts a weakening of AMOC strength in a few years after its peak around 2005. Here, we show that in the GFDL coupled climate model assimilated with observed subsurface temperature data, including recent Argo network data (2003–2008), the leading mode of the North Atlantic Tsub anomalies is similar to that found with the objectively analyzed Tsub data and highly correlated with the leading mode of altimetry SSH anomalies for the period 1993–2008. A statistical auto-regressive (AR) model is fit to the time-series of the leading mode of objectively analyzed detrended North Atlantic Tsub anomalies (1955–2003) and is applied to assimilated Tsub and altimetry SSH anomalies to make predictions. A similar statistical AR model, fit to the time-series of the leading mode of modeled Tsub anomalies from the 1000-year GFDL CM2.1 control simulation, is applied to predict modeled Tsub, SSH, and AMOC anomalies. The two AR models show comparable skills in predicting observed Tsub and modeled Tsub, SSH and AMOC variations.