Skip to main content
SHARE
Publication

Investigation of pyruvic acid photolysis at the air-liquid interface as a source of aqueous secondary organic aerosols

by Xiao Sui, Bo Xu, Oleg Kostko, Xiao-ying Yu
Publication Type
Journal
Journal Name
Science of the Total Environment
Publication Date
Page Number
172729
Volume
930
Issue
1

Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor. Results from mass spectral analysis and the determination of appearance energies (AEs) indicate that photolysis of PA can generate radicals, then they recombine with carboxylic acids and simple molecular oligomers. Furthermore, the preliminary products could form larger oligomers via radical reaction or esterification in the presence of hydroxyl and carboxyl functional groups. Mass spectral comparison shows that most photochemical reactions would complete within 4 h. The expanded photochemistry-driven reaction flowchart of PA is proposed based on the newly discovered products. Our results reveal that the interfacial PA photochemical reactions have different mechanisms from the bulk liquid due to the interfacial properties, such as molecular density, composition, and ion concentration. Our findings show that in situ mass spectral analysis with bright photon ionization is useful to elucidate the contribution of a-l interfacial reactions leading to aqSOA formation.