Skip to main content
SHARE
Publication

Implementation of a self-consistent slab model of bilayer structure in the SasView suite...

by Luoxi Tan, James G Elkins, Brian H Davison, Elizabeth Kelley, Jonathan Nickels
Publication Type
Journal
Journal Name
Journal of Applied Crystallography
Publication Date
Page Numbers
363 to 370
Volume
54
Issue
1

Slab models are simple and useful structural descriptions which have long been used to describe lyotropic lamellar phases, such as lipid bilayers. Typically, slab models assume a midline symmetry and break a bilayer structure into three pieces, a central solvent-free core and two symmetric outer layers composed of the soluble portion of the amphiphile and associated solvent. This breakdown matches reasonably well to the distribution of neutron scattering length density and therefore is a convenient and common approach for the treatment of small-angle scattering data. Here, an implementation of this model within the SasView software suite is reported. The implementation is intended to provide physical consistency through the area per amphiphile molecule and number of solvent molecules included within the solvent-exposed outer layer. The proper use of this model requires knowledge of (or good estimates for) the amphiphile and solvent molecule volume and atomic composition, ultimately providing a self-consistent data treatment with only two free parameters: the lateral area per amphiphile molecule and the number of solvent molecules included in the outer region per amphiphile molecule. The use of this code is demonstrated in the fitting of standard lipid bilayer data sets, obtaining structural parameters consistent with prior literature and illustrating the typical and ideal cases of fitting for neutron scattering data obtained using single or multiple contrast conditions. While demonstrated here for lipid bilayers, this model is intended for general application to block copolymers, surfactants, and other lyotropic lamellar phase structures for which a slab model is able to reasonably estimate the neutron scattering length density/electron-density profile of inner and outer layers of the lamellae.