Abstract
In this work, we study matter in the cores of proto-neutron stars, focusing on the impact of their composition on the stellar structure. We begin by examining the effects of finite temperature (through a fixed entropy per baryon) and lepton fraction on purely nucleonic matter by making use of the DSH (Du, Steiner & Holt) model. We then turn our attention to a relativistic mean-field model containing exotic degrees of freedom, the Chiral Mean Field (CMF) model, again, under the conditions of finite temperature and trapped neutrinos. In the latter, since both hyperons and quarks are found in the cores of large-mass stars, their interplay and the possibility of mixtures of phases is taken into account and analysed. Finally, we discuss how stellar rotation can affect our results.