Skip to main content
SHARE
Publication

Geobacter sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane...

Publication Type
Journal
Journal Name
Environmental Science & Technology
Publication Date
Page Numbers
3430 to 3440
Volume
56
Issue
6

Chlorinated ethanes, including 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA), are widespread groundwater contaminants. Enrichment cultures XRDCA and XRTCA derived from river sediment dihaloeliminated 1,2-DCA to ethene and 1,1,2-TCA to vinyl chloride (VC), respectively. The XRTCA culture subsequently converted VC to ethene via hydrogenolysis. Microbial community profiling demonstrated the enrichment of Geobacter 16S rRNA gene sequences in both the XRDCA and XRTCA cultures, and Dehalococcoides mccartyi (Dhc) sequences were only detected in the ethene-producing XRTCA culture. The presence of a novel Geobacter population, designated as Geobacter sp. strain IAE, was identified by the 16S rRNA gene-targeted polymerase chain reaction and Sanger sequencing. Time-resolved population dynamics attributed the dihaloelimination activity to strain IAE, which attained the growth yields of 0.93 ± 0.06 × 107 and 1.18 ± 0.14 × 107 cells per μmol Cl– released with 1,2-DCA and 1,1,2-TCA as electron acceptors, respectively. In contrast, Dhc growth only occurred during VC-to-ethene hydrogenolysis. Our findings discover a Geobacter sp. strain capable of respiring multiple chlorinated ethanes and demonstrate the involvement of a broader diversity of organohalide-respiring bacteria in the detoxification of 1,2-DCA and 1,1,2-TCA.