Skip to main content
SHARE
Publication

Genus-wide assessment of lignocellulose utilization in the extremely thermophilic Caldicellulosiruptor by genomic, pan-genomi...

Publication Type
Journal
Journal Name
Applied and Environmental Microbiology
Publication Date
Volume
84

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and thirteen genome sequences were used to re-assess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor. The updated core-genome contains 1,401 ortholog groups (average genome size for thirteen species = 2,516 genes). The pan-genome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multi-domain glycoside hydrolases (GH). These include three cellulases with GH48 domains that are co-located in the Glucan Degradation Locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. str. Rt8.B8 (re-named here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus str. NA10 (re-named here Caldicellulosiruptor naganoensis NA10), and Caldicellulosiruptor sp. str. Wai35.B1 (re-named here Caldicellulosiruptor danielii) degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than C. bescii in this regard and differed from the other twelve species examined here, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.7% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to C. bescii. These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.