Skip to main content
SHARE
Publication

Fixed Depth Hamiltonian Simulation via Cartan Decomposition...

by Yan Wang, Eugen F Dumitrescu
Publication Type
Journal
Journal Name
Physical Review Letters
Publication Date
Page Number
070501
Volume
129
Issue
7

Simulating quantum dynamics on classical computers is challenging for large systems due to the significant memory requirements. Simulation on quantum computers is a promising alternative, but fully optimizing quantum circuits to minimize limited quantum resources remains an open problem. We tackle this problem by presenting a constructive algorithm, based on Cartan decomposition of the Lie algebra generated by the Hamiltonian, which generates quantum circuits with time-independent depth. We highlight our algorithm for special classes of models, including Anderson localization in one-dimensional transverse field XY model, where O(n2)-gate circuits naturally emerge. Compared to product formulas with significantly larger gate counts, our algorithm drastically improves simulation precision. In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.