Skip to main content
SHARE
Publication

Fatigue-Resistance Enhancements by Glass-Forming Metallic Films...

Publication Type
Journal
Journal Name
Materials Science and Engineering A
Publication Date
Page Numbers
246 to 252
Volume
468-470

Zr-based glass-forming metallic films were coated on a 316L stainless steel and a Ni-based alloy by the magnetron-sputter deposition. Four-point-bending fatigue tests were conducted on those coated materials with the film surface on the tensile side. Results showed that the fatigue life and fatigue-endurance limit of the materials could be considerably improved, and the enhancements vary with the maximum applied stress and the substrate material. Fractographs showed that the film remained well adhered to the substrate even after the severe plastic deformation. Surface-roughness measurements indicated the improvement of the surface finishes due to the deposition of the glass-forming film. Nanoindentation test results suggested that the thin film exhibited both high yield strength and good ductility. The reduction of the surface roughness, good adhesion between the film and the substrate, and the excellent strength and ductility of the glass-forming metallic film are the major factors for the fatigue-resistance enhancements of the coated material. A micromechanical model is developed to illustrate the mechanisms of fatigue-resistance enhancements through the interaction between the amorphous film and the substrate slip bands.