Skip to main content

External strain-enhanced cysteine enantiomeric separation ability on alloyed stepped surfaces...

Publication Type
Journal Name
The Journal of Chemical Physics
Publication Date
Page Number

Using density functional theory with an accurate treatment of van der Waals interactions, we investigate the enantioselective recognition and separation of chiral molecules on stepped metal surfaces. Our calculations demonstrate that the separation ability of metal substrates can be significantly enhanced by surface decoration and external strain. For example, applying 2% tensile strain to the Ag-alloyed Au(532) surface leads to a dramatic increase (by 89%) in cysteine enantioselectivity as compared to that of pristine Au(532). Analysis on the computed binding energies shows that the interaction energy is the predominant factor that affects the separation efficiency in strongly bound systems. Our study presents a new strategy to modify the enantioselectivity of stepped metal surfaces and paves the way for exploring high efficiency chiral separation technology in pharmaceutical industry.