Skip to main content
SHARE
Publication

Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors

Publication Type
Journal
Journal Name
Journal of Medicinal Chemistry
Publication Date
Page Numbers
18478 to 18490
Volume
67
Issue
20

SARS-CoV-2 propagation under nirmatrelvir and ensitrelvir pressure selects for main protease (MPro) drug-resistant mutations E166V (DRM2), L50F/E166V (DRM3), E166A/L167F (DRM4), and L50F/E166A/L167F (DRM5). DRM2-DRM5 undergoes N-terminal autoprocessing to produce mature MPro with dimer dissociation constants (Kdimer) 2–3 times larger than that of the wildtype. Co-selection of L50F restores catalytic activity of DRM2 and DRM4 from ∼10 to 30%, relative to that of the wild-type enzyme, without altering Kdimer. Binding affinities and thermodynamic profiles that parallel the drug selection pressure, exhibiting significant decreases in affinity through entropy/enthalpy compensation, were compared with GC373. Reorganization of the active sites due to mutations observed in the inhibitor-free DRM3 and DRM4 structures as compared to MProWT may account for the reduced binding affinities, although DRM2 and DRM3 complexes with ensitrelvir are almost identical to MProWT-ensitrelvir. Chemical reactivity changes of the mutant active sites due to differences in electrostatic and protein dynamics effects likely contribute to losses in binding affinities.