Skip to main content
SHARE
Publication

Disfrac Version 2.0 Users Guide

Publication Type
ORNL Report
Publication Date

DISFRAC is the implementation of a theoretical, multi-scale model for the prediction of fracture toughness in the ductile-to-brittle transition temperature (DBTT) region of ferritic steels. Empirically-derived models of the DBTT region cannot legitimately be extrapolated beyond the range of existing fracture toughness data. DISFRAC requires only tensile properties and microstructural information as input, and thus allows for a wider range of application than empirical, toughness data dependent models. DISFRAC is also a framework for investigating the roles of various microstructural and macroscopic effects on fracture behavior, including carbide particle sizes, grain sizes, strain rates, and material condition.

DISFRAC’s novel approach is to assess the interaction effects of macroscopic conditions (geometry, loading conditions) with variable microstructural features on cleavage crack initiation and propagation. The model addresses all stages of the fracture process, from microcrack initiation within a carbide particle, to propagation of that crack through grains and across grain boundaries, finally to catastrophic failure of the material. The DISFRAC procedure repeatedly performs a deterministic analysis of microcrack initiation and propagation within a macroscopic crack plastic zone to calculate a critical fracture toughness value for each microstructural geometry set.

The current version of DISFRAC, version 2.0, is a research code for developing and testing models related to cleavage fracture and transition toughness. The various models and computations have evolved significantly over the course of development and are expected to continue to evolve as testing and data collection continue. This document serves as a guide to the usage and theoretical foundations of DISFRAC v2.0. Feedback is welcomed and encouraged.