Skip to main content
SHARE
Publication

Discovering and Designing a Chimeric Hyperthermophilic Chitinase for Crystalline Chitin Degradation

Publication Type
Journal
Journal Name
ACS Sustainable Chemistry & Engineering
Publication Date
Page Numbers
4690 to 4698
Volume
11
Issue
12

Chitin is one of the most abundant renewable biopolymers on earth. However, it is highly crystalline and recalcitrant to degrade. Here, we report a hyperthermophilic chitinase (ActChi) to directly hydrolyze crystalline chitin at its optimal temperature of 80 °C. It contains a malectin domain, a fibronectin type-III (Fn3) domain, and a catalytic domain (CDchi). Both Fn3 and malectin have the function of chitin binding domain (ChBD) to increase the activity. Fn3 also significantly increases thermostability, but malectin decreases it. To enhance both activity and thermostability, we introduced a heterogeneous and hyperthermophilic ChBD at the N-terminus of CDchi to obtain ChBD-CDchi. The activity of this hybrid enzyme is 201 U/μmol for crystalline chitin, which has increased 400% compared with that of ActChi. In addition, ChBD-CDchi can continuously degrade crystalline chitin for more than 4 days at 70 °C to increase the overall hydrolysis rate. The strategy is a good example of green sustainable degradation for crystalline biopolymer in nature.