Skip to main content
SHARE
Publication

Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor

Publication Type
Journal
Journal Name
Nature Communications
Publication Date
Page Numbers
5197 to 5197
Volume
11
Issue
1

A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2 has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1 K−1 at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity.