Skip to main content
SHARE
Publication

Crystallographic structure and molecular dynamics simulations of the major endoglucanase from Xanthomonas campestris pv. camp...

Publication Type
Journal
Journal Name
International Journal of Biological Macromolecules
Publication Date
Page Numbers
493 to 502
Volume
136

Cellulases are essential enzymatic components for the transformation of plant biomass into fuels, renewable materials and green chemicals. Here, we determined the crystal structure, pattern of hydrolysis products release, and conducted molecular dynamics simulations of the major endoglucanase from the Xanthomonas campestris pv. campestris (XccCel5A). XccCel5A has a TIM barrel fold with the catalytic site centrally placed in a binding groove surrounded by aromatic side chains. Molecular dynamics simulations show that productive position of the substrate is secured by a network of hydrogen bonds in the four main subsites, which differ in details from homologous structures. Capillary zone electrophoresis and computational studies reveal XccCel5A can act both as endoglucanase and licheninase, but there are preferable arrangements of substrate regarding β-1,3 and β-1,4 bonds within the binding cleft which are related to the enzymatic efficiency.