Skip to main content
SHARE
Publication

Black-box optimization of CT acquisition and reconstruction parameters: a reinforcement learning approach

Publication Type
Conference Paper
Book Title
Medical Imaging 2025: Physics of Medical Imaging
Publication Date
Page Number
82
Volume
13405
Publisher Location
Bellingham, Washington, United States of America
Conference Name
SPIE Medical Imaging
Conference Location
San Diego, California, United States of America
Conference Sponsor
SPIE
Conference Date
-

Protocol optimization is critical in Computed Tomography (CT) for achieving desired diagnostic image quality while minimizing radiation dose. Due to the inter-effect of influencing CT parameters, traditional optimization methods rely on the testing of exhaustive combinations of these parameters. This poses a notable limitation due to the impracticality of exhaustive parameter testing. This study introduces a novel methodology leveraging Virtual Imaging Trials (VITs) and reinforcement learning to more efficiently optimize CT protocols. Computational phantoms with liver lesions were imaged using a validated CT simulator and reconstructed with a novel CT reconstruction Toolkit. The optimization parameter space included tube voltage, tube current, reconstruction kernel, slice thickness, and pixel size. The optimization process was done using a Proximal Policy Optimization (PPO) agent which was trained to maximize the Detectability Index (d’) of the liver lesion for each reconstructed image. Results showed that our reinforcement learning approach found the absolute maximum d’ across the test cases while requiring 79.7% fewer steps compared to an exhaustive search, demonstrating both accuracy and computational efficiency, offering a efficient and robust framework for CT protocol optimization. The flexibility of the proposed technique allows for use of varying image quality metrics as the objective metric to maximize for. Our findings highlight the advantages of combining VIT and reinforcement learning for CT protocol management.