Abstract
Broadband time-energy entangled photons feature strong temporal correlations with potential for precision delay metrology, but previous work has leveraged only time-of-flight information ultimately limited by the detection jitter and resolution of the time-tagging electronics. Firstly, our work pushes the entanglement-based nonlocal delay metrology from the conventional time-of-flight measurement to a new direction—two-photon interferometry with subpicosecond sensitivity independent of detection resolution. Next, we show the selective sensitivity of frequency-bin encoded Bell states to the sum and difference of biphoton-delays by using a novel reconfigurable setup capable of switching between the Bell states by successively employing single and dual spectral-line pumps.