Skip to main content

Bayesian-Motivated Probabilistic Model of Hurricane-Induced Multimechanism Flood Hazards

Publication Type
Journal Name
Journal of Waterway, Port, Coastal, and Ocean Engineering
Publication Date
Page Numbers
1 to 16

Multimechanism floods (MMFs) are caused by the simultaneous occurrence of more than one flood mechanism such as storm surge, precipitation, tides, and waves. MMFs can lead to more severe or differing impacts than single-mechanism floods. As a result, comprehensive risk assessments require the ability to assess the multivariate probabilistic behaviors of hazards from MMFs. This study introduces a novel Bayesian-motivated approach for the probabilistic assessment of hurricane-induced hazards from the combination of the surge, precipitation, tides, and river antecedent flow. A Bayesian network (BN) is developed to capture the physical (conditional) relationship between variables and facilitate the generation of a hazard curve for river discharge that captures the contributions from multiple flood drivers. A case study located along the Delaware River is used to illustrate the proposed approach. Five computationally efficient representative predictive models are developed to estimate the conditional distributions required for the BN as a means of demonstrating the overall framework. The predictive models used in this study act as placeholders and can be replaced with more sophisticated and high-fidelity models depending on the desired accuracy level. While the predictive models are intended to be representative and illustrative, the model performance is evaluated using three historical storms that affected the area. Overall, the proposed framework is shown to be transparent, effective, and adaptable.