Skip to main content

Autonomous Continuous Flow Reactor Synthesis for Scalable Atom-Precision...

by Bobby G Sumpter, Kunlun Hong, Rama K Vasudevan, Ilia N Ivanov, Rigoberto C Advincula
Publication Type
Journal Name
Carbon Trends
Publication Date
Page Number

With new instrumentation design, robotics, and in-operando hyphenated analytical tool automation, the intelligent discovery of synthesis pathways is becoming feasible. It can potentially bridge the gap for the scale-up of new materials. We review current progress and describe a new system that uses an autonomous continuous flow chemistry framework to translate high-quality lead molecules and materials to quantities that can meet scalability demands. At the core is a continuous flow synthesis platform that can design its viable synthesis pathway to a particular molecule or material and then autonomously carry it out. This is realized by integrating: (1) A workflow/architecture for multimode chemical/materials characterization in-line. The in-line characterization modes are NMR, ESR, IR, Raman, UV-Vis, GC-MS, and HPLC, along with ex-situ modes for X-Ray and neutron scattering; (2) Integration for feedback/analysis/data storage of the control variables; (3) A core software stack that includes deep learning and reinforcement learning alongside quantum chemistry and molecular dynamics; (4) On-demand compute architectures that parse calculations to compute resources needed which include light-weight edge, mid-level edge (NVIDA DGX-2), and high-performance computing. We demonstrate preliminary results on how this autonomous reactor system can enhance our ability to deliver deuterated materials, copolymers, and site-substituted molecules.