Skip to main content

Automated defect analysis in electron microscopic images...

by Wei Li, Kevin G Field, Dane Morgan
Publication Type
Journal Name
npj Computational Materials
Publication Date
Page Number

Electron microscopy and defect analysis are a cornerstone of materials science, as they offer detailed insights on the microstructure and performance of a wide range of materials and material systems. Building a robust and flexible platform for automated defect recognition and classification in electron microscopy will result in the completion of analysis orders of magnitude faster after images are recorded, or even online during image acquisition. Automated analysis has the potential to be significantly more efficient, accurate, and repeatable than human analysis, and it can scale with the increasingly important methods of automated data generation. Herein, an automated recognition tool is developed based on a computer vison–based approach; it sequentially applies a cascade object detector, convolutional neural network, and local image analysis methods. We demonstrate that the automated tool performs as well as or better than manual human detection in terms of recall and precision and achieves quantitative image/defect analysis metrics close to the human average. The proposed approach works for images of varying contrast, brightness, and magnification. These promising results suggest that this and similar approaches are worth exploring for detecting multiple defect types and have the potential to locate, classify, and measure quantitative features for a range of defect types, materials, and electron microscopic techniques.