Skip to main content
SHARE
News

Superconductivity – Crystal clear conclusion

Atomic arrangements inside the unit cell of an iron-based superconducting material show that reduction of unit cells along the c-axis is necessary for causing superconductivity.

January 4, 2017 – Hundreds of tables and plots from papers published about superconductivity are the focus of a Journal of Physics: Condensed Matter review paper that condenses this data into a single graph. “We were able to find a pattern throughout many scientists’ work that was never recognized because no one had taken the time to assemble all of the data,” said co-author Lance Konzen. He and ORNL’s Athena Safa Sefat conclude that superconducting properties of iron- and copper-based materials are highly dependent on the behavior of atomic arrangements inside the unit cells. They noted that their paper, titled “Lattice Parameters Guide Superconductivity in Iron-Arsenides,” is a resource that will guide materials chemists and could save considerable time. Konzen’s work was sponsored by the Department of Energy’s Workforce Development for Teachers and Scientists and the Science Undergraduate Laboratory Internship programs.