Skip to main content

Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

Publication Type
Journal Name
The Journal of Physical Chemistry
Publication Date
Conference Date

Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF4 volume ratio displaces the larger [TFSI] anions with smaller [BF4] ions, leading to an excess adsorption of [Emim+] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. Molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.