Skip to main content
Publication

Crystal structure and thermal expansion of a CsCe2Cl7 scintillator

by
Publication Type
Journal
Journal Name
Journal of Solid State Chemistry
Publication Date
Volume
227

We used single-crystal X-ray diffraction data to determine crystal structure of CsCe2Cl7. It crystallizes in a P1121/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe2Cl7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10–6/°C) with respect to the b and c axes (27.0×10–6/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe2Cl7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.