Skip to main content
SHARE
Publication

Transitioning from File-Based HPC Workflows to Streaming Data Pipelines with openPMD and ADIOS2...

Publication Type
Conference Paper
Book Title
Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation
Publication Date
Page Numbers
99 to 118
Volume
1512
Publisher Location
Cham, Switzerland
Conference Name
Smoky Mountains Computational Science and Engineering Conference (SMC)
Conference Location
Kingsport, Tennessee, United States of America
Conference Sponsor
UT-Battelle and DOE
Conference Date
-

This paper aims to create a transition path from file-based IO to streaming-based workflows for scientific applications in an HPC environment. By using the openPMP-api, traditional workflows limited by filesystem bottlenecks can be overcome and flexibly extended for in situ analysis. The openPMD-api is a library for the description of scientific data according to the Open Standard for Particle-Mesh Data (openPMD). Its approach towards recent challenges posed by hardware heterogeneity lies in the decoupling of data description in domain sciences, such as plasma physics simulations, from concrete implementations in hardware and IO. The streaming backend is provided by the ADIOS2 framework, developed at Oak Ridge National Laboratory. This paper surveys two openPMD-based loosely-coupled setups to demonstrate flexible applicability and to evaluate performance. In loose coupling, as opposed to tight coupling, two (or more) applications are executed separately, e.g. in individual MPI contexts, yet cooperate by exchanging data. This way, a streaming-based workflow allows for standalone codes instead of tightly-coupled plugins, using a unified streaming-aware API and leveraging high-speed communication infrastructure available in modern compute clusters for massive data exchange. We determine new challenges in resource allocation and in the need of strategies for a flexible data distribution, demonstrating their influence on efficiency and scaling on the Summit compute system. The presented setups show the potential for a more flexible use of compute resources brought by streaming IO as well as the ability to increase throughput by avoiding filesystem bottlenecks.