Skip to main content
SHARE
Publication

In situ synchrotron diffraction of pressure-induced phase transition in DyPO4 under variable hydrostaticity...

by Jai Sharma, Matthew Musselman, Bianca Haberl, Corinne Packard
Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
184105
Volume
103
Issue
18

In situ synchrotron x-ray diffraction was conducted on polycrystalline DyPO4 to elucidate the details of the pressure-induced transition from the xenotime polymorph to the monazite polymorph. We used three different pressure-transmitting media (neon, a 16:3:1 methanol-ethanol-water mixture, and potassium chloride) to investigate the effect of hydrostaticity on the phase behavior. Specifically, our data clearly show a hydrostatic onset pressure of the xenotime-monazite transition of 9.1 GPa, considerably lower than the 15.3 GPa previously determined by Raman spectroscopy. Based on (quasi)hydrostatic data taken in a neon environment, third-order Birch-Murnaghan equation-of-state fits give a xenotime bulk modulus of 144 GPa and a monazite bulk modulus of 180 GPa (both with pressure derivatives of 4.0). Structural data and axial compressibilities show that DyPO4 is sensitive to shear and has an anisotropic response to pressure. More highly deviatoric conditions cause the onset of the transition to shift to pressures at least as low as 7.0 GPa. We attribute early transition to shear-induced distortion of the PO4 tetrahedra. Our characterization of the high-pressure behavior of DyPO4 under variable hydrostaticity is critical for advancing rare earth orthophosphate fiber coating applications in ceramic matrix composites and may inform future tailoring of phase composition for controlled shear and pressure applications.