Abstract
Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninvasively understand the sources of arrhythmias for individual patients. To help increase the effectiveness of ECGI, we provide new ways to visualise associated measurement and modelling errors. In this paper, we study source localisation uncertainty in two steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source localisation model with error sampling to understand the variations in ECGI solutions. Second, we present multiple visualisation techniques, including confidence maps, level-sets, and topology-based visualisations, to better understand uncertainty in source localization. Our approach offers a new way to study uncertainty in the ECGI pipeline.