Skip to main content


Publication Type
Conference Paper
Publication Date
Conference Name
American Geophysical Union fall meeting
Conference Location
San Francisco, California, United States of America
Conference Date

Nobody is better suited to “describe” data than the scientist who created it. This “description” about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset [1]. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, and locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [2][4].
OME is part of ORNL’s Mercury software fleet [2][3]. It was jointly developed to support projects funded by the United States Geological Survey (USGS), U.S. Department of Energy (DOE), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA). OME’s architecture provides a customizable interface to support project-specific requirements. Using this new architecture, the ORNL team developed OME instances for USGS’s Core Science Analytics, Synthesis, and Libraries (CSAS&L), DOE’s Next Generation Ecosystem Experiments (NGEE) and Atmospheric Radiation Measurement (ARM) Program, and the international Surface Ocean Carbon Dioxide ATlas (SOCAT).
Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. From the information on the form, the Metadata Editor can create an XML file on the server that the editor is installed or to the user’s personal computer. Researchers can also use the ORNL Metadata Editor to modify existing XML metadata files.
As an example, an NGEE Arctic scientist use OME to register their datasets to the NGEE data archive and allows the NGEE archive to publish these datasets via a data search portal ( These highly descriptive metadata created using OME allows the Archive to enable advanced data search options using keyword, geo-spatial, temporal and ontology filters. Similarly, ARM OME allows scientists or principal investigators (PIs) to submit their data products to the ARM data archive.
How would OME help Big Data Centers like the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)?
The ORNL DAAC is one of NASA’s Earth Observing System Data and Information System (EOSDIS) data centers managed by the Earth Science Data and Information System (ESDIS) Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological, geological, and chemical components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data.
OME will allow data centers like the NGEE and ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability.

Useful Links:

Contact: Ranjeet Devarakonda (

[1] Federal Geographic Data Committee. Content standard for digital geospatial metadata. Federal Geographic Data Committee, 1998.
[2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.
[3] Wilson, B. E., Palanisamy, G., Devarakonda, R., Rhyne, B. T., Lindsley, C., & Green, J. (2010). Mercury Toolset for Spatiotemporal Metadata.
[4] Pouchard, L. C., Branstetter, M. L., Cook, R. B., Devarakonda, R., Green, J., Palanisamy, G., ... & Noy, N. F. (2013). A Linked Science investigation: enhancing climate change data discovery with semantic technologies. Earth science informatics, 6(3), 175-185.