Skip to main content
SHARE
Publication

Large Positive Zero-Field Splitting in the Cluster Magnet Ba 3 CeRu 2 O 9...

by Qiang Chen, Keith M Taddei, Matthew B Stone, Alexander I Kolesnikov, Adam A Aczel
Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
9928 to 9936
Volume
141
Issue
25

We present the synthesis and magnetic characterization of a polycrystalline sample of the 6H-perovskite Ba3CeRu2O9, which consists of Ru dimers based on face-sharing RuO6 octahedra. Our low-temperature magnetic susceptibility, magnetization, and neutron powder diffraction results reveal a nonmagnetic singlet ground state for the dimers. Inelastic neutron scattering, infrared spectroscopy, and the magnetic susceptibility over a wide temperature range are best explained by a molecular orbital model with a zero-field splitting parameter D = 85 meV for the Stot = 1 electronic ground-state multiplet. This large value is likely due to strong mixing between this ground-state multiplet and low-lying excited multiplets, arising from a sizable spin molecular orbital coupling combined with an axial distortion of the Ru2O9 units. Although the positive sign for the splitting ensures that Ba3CeRu2O9 is not a single molecule magnet, our work suggests that the search for these interesting materials should be extended beyond Ba3CeRu2O9 to other molecular magnets based on metal–metal bonding.