Abstract
Neutron scattering is one of the most useful methods of studying the structure of matter, with applications to biomedical, structural, magnetic and energy-related materials. Neutron-scattering instruments are installed around research reactors or accelerator-based neutron sources, and neutron guides are critical components of these facilities. They are neutron-transport optical devices consisting of state-of-the-art mirrors often tens of meters long. Here we demonstrate a novel fabrication method of all-metallic neutron guides and axisymmetric mirrors by electroplating from precision mandrels. The process allows for the fabrication of single-piece all-metal guides of prismatic and axisymmetric shapes. We also demonstrate supermirror guides and axisymmetric focusing supermirrors produced with the same technology. We present the fabrication and tests of the multilayer-coated replicated guides and optic and show that the mandrel is reproduced with high fidelity and reliability. Such supermirror optics will provide game-changing improvements in neutron techniques.