Skip to main content
SHARE
Publication

Concept and realization of Kitaev quantum spin liquids...

by Hidenori Takagi, Tomohiro Takayama, George Jackeli, Giniyat Khaliullin, Stephen E Nagler
Publication Type
Journal
Journal Name
Nature Reviews Physics
Publication Date
Page Numbers
264 to 280
Volume
1
Issue
4

The Kitaev model is an exactly solvable S = 1/2 spin model on a 2D honeycomb lattice, in which the spins fractionalize into Majorana fermions and form a topological quantum spin liquid (QSL) in the ground state. Several complex iridium oxides, as well as α-RuCl3, are magnetic insulators with a honeycomb structure, and it was noticed that they accommodate essential ingredients of the Kitaev model owing to the interplay of electron correlation and spin–orbit coupling. This has led to a race to realize the Kitaev QSL and detect signatures of Majorana fermions. We summarize the theoretical background of the Kitaev QSL ground state and its realization using spin–orbital entangled Jeff = 1/2 moments. We provide an overview of candidate materials and their electronic and magnetic properties, including Na2IrO3, α-Li2IrO3, β-Li2IrO3, γ-Li2IrO3, α-RuCl3 and H3LiIr2O6. Finally, we discuss experiments showing that H3LiIr2O6 and α-RuCl3 in an applied magnetic field exhibit signatures of the QSL state and that α-RuCl3 has unusual magnetic excitations and thermal transport properties consistent with spin fractionalization.