Skip to main content
SHARE
Publication

An atomistic structural description of the ferrielectric polar phase involving non-coplanar cation displacements

Publication Type
Journal
Journal Name
Scripta Materialia
Publication Date
Page Number
116426
Volume
256

Materials with antipolar-polar transformation are attractive for their large functional responses. However, the antipolar state remains controversial in many materials. For example, recent studies on archetypical antiferroelectric (AFE) materials indicate an incomplete compensation of antiparallel dipoles, which prompted their alternative definition as ferrielectric. Here, we investigated the origin of the ferrielectric (FIE) state in a classical AFE material using X-ray and neutron total scattering. We show that the FIE state arises from 3-dimensional modulation of the cation-centric electric dipoles, which can be viewed as periodic arrangement of 180° twin boundaries with non-Ising characteristics.