Abstract
As the US strives to divest from fossil fuels, dedicated energy crops have increased in popularity because of their potential to serve as a renewable source of transportation fuel and biomass-generated electricity. Whereas the impacts of crop agriculture on biodiversity have been well-documented, less is known about the potential impacts that growing bioenergy crops could have on wildlife. In this study, we look specifically at the ring-necked pheasant (Phasianus colchicus) and how pheasant populations may be influenced by growing and harvesting bioenergy crops. We explored effects of temporal harvest strategies at the field scale on biomass yield and pheasant population size. To investigate, we developed an agent-based model (ABM) that simulates ring-necked pheasants, tractors, hunters, and vegetation classes. One such vegetation class is land that is enrolled in a Conservation Reserve Program (CRP) plan specifically targeting pheasant conservation. Using this ABM, we assessed four different landscapes—corn-dominated, CRP-dominated, grassland-dominated, and mixed landscape—under strategies that varied the time of harvest. We also used ecological valuation to compare scenario outcomes from an economic perspective. We determined that biomass yield and pheasant population size were sensitive to harvesting times. Our scenarios totaled between ∼$931,000 (minimum) and $3.8 million (maximum) over all landscapes, though on average harvesting in late spring generated the most value ($2.45 million) and harvesting in fall was a close second in terms of profitability ($2.39 million).