Publication

Separating the configurational and vibrational entropy contributions in metallic glasses

by Hillary L. Smith, et al.

Abstract 

Glassy materials exist in nature and play a critical role in technology, but key differences between the glass, liquid and crystalline phases are not well understood. Over several decades there has been controversy about the specific heat absorbed as a glass transforms to a liquid—does this originate from vibrational entropy or configurational entropy? Here we report direct in situ measurements of the vibrational spectra of strong and fragile metallic glasses in the glass, liquid and crystalline phases. For both types of material, the measured vibrational entropies of the glass and liquid show a tiny excess over the crystal, representing less than 5% of the total excess entropy measured with step calorimetry. These results reveal that the excess entropy of metallic glasses is almost entirely configurational in origin, consistent with the early theories of Gibbs and co-workers describing the glass transition as a purely configurational transition.

Read more

Download Publication

Access for Nature Physics subscribers only.

Publication Citation

Nature Physics 2017 June 15, 2017
DOI: 10.1038/nphys4142

Share