
Ramgen Power Systems is using Jaguar to simulate equipment that will achieve carbon sequestration at a significantly lower cost than that offered by conventional equipment. This visualization shows Ramgen's shock wave-based compression technology. Image courtesy of Michael Matheson, ORNL, and Ramgen Power Systems.
One of the most pressing scientific challenges facing the United States and the world is reducing greenhouse gas emissions. Compounding that challenge is the fact that power plants burning fossil fuels account for more than 40 percent of the world's energy-related CO2 emissions and will continue to dominate the supply of electricity until the middle of the century. There is an urgent need for cost-effective methods to capture and store their carbon emissions.
The Department of Energy (DOE) is currently sponsoring large-scale demonstration projects to prove the viability of carbon capture and sequestration (CCS). The principal barrier to widespread application of CCS is its cost. Once the CO2 is captured, compressing it to the required 100 atmospheres represents approximately 33 percent of the total cost of CCS.
Ramgen Power Systems, a small, Seattle-based energy research and development (R&D) firm, is developing a novel gas compressor system based on shock-wave technology used in supersonic flight applications. This technology holds important promise for the turbomachinery industry of engines and compressors. Ramgen is a world leader in applying this shock-wave-based compression technique to gases, including CO2—a more challenging application than air because of CO2's larger molecular weight. DOE's National Energy Technology Laboratory is providing cost-shared support for this project.
The traditional process to design and optimize new turbomachinery, or machines that transfer energy between a rotor and a fluid, involves the testing of multiple physical prototypes, which is expensive and takes more time than DOE's demonstration schedule permits. Ramgen modified this conventional development process by using more extensive computer simulation validated by test results. DOE leadership determined that applying the most capable, high-performance computing systems and modern computational fluid dynamics (CFD) analysis would further accelerate optimizing the turbomachinery's performance.
The Department of Energy (DOE) is currently sponsoring large-scale demonstration projects to prove the viability of carbon capture and sequestration (CCS). The principal barrier to widespread application of CCS is its cost. Once the CO2 is captured, compressing it to the required 100 atmospheres represents approximately 33 percent of the total cost of CCS.
Ramgen Power Systems, a small, Seattle-based energy research and development (R&D) firm, is developing a novel gas compressor system based on shock-wave technology used in supersonic flight applications. This technology holds important promise for the turbomachinery industry of engines and compressors. Ramgen is a world leader in applying this shock-wave-based compression technique to gases, including CO2—a more challenging application than air because of CO2's larger molecular weight. DOE's National Energy Technology Laboratory is providing cost-shared support for this project.
The traditional process to design and optimize new turbomachinery, or machines that transfer energy between a rotor and a fluid, involves the testing of multiple physical prototypes, which is expensive and takes more time than DOE's demonstration schedule permits. Ramgen modified this conventional development process by using more extensive computer simulation validated by test results. DOE leadership determined that applying the most capable, high-performance computing systems and modern computational fluid dynamics (CFD) analysis would further accelerate optimizing the turbomachinery's performance.