

However, CCS’s technical path to
its current Intel Paragon XP/S 150
centerpiece (see photograph at right)
had a different origin: The first
machine was the 32-processor Kendall
Square Research KSR-1 computer,
delivered in September 1991. This
shared memory machine was truly
innovative at that time. But the
defining HPCC event was a
cooperative research and development
agreement (CRADA) between Intel
SSD and ORNL. In September 1992,
this CRADA brought to CCS the first
of the Intel Paragons, a 66-node
XP/S 5 with the general purpose (GP)
architecture (i.e., two CPUs per node,
one for computing and the other for
message passing, as depicted in Fig. 1).
The architecture of this and subsequent
Paragons was the two-dimensional
mesh shown in Fig. 1. (The number
following “XP/S” in the names of Intel
machines is a measure of the peak

10

w

arnet

']-

‘ormance

allel
....-face
(HiPPY)

computing speed of the overall
machine in billions of FLOPS, or
gigaflops.)

Building from this CRADA, ORNL
and Intel SSD signed a contract in June
1992 that culminated in the Paragon
XP/S 150, but this machine was
preceded by a smaller machine,
planned initially to be part of CCS only
until the arrival of the XP/S 150. The
smaller machine, the Paragon XP/S 35,
also with GP architecture, had 512
nodes with 16 million bytes [megabytes
(MB)] of memory per node; it was also
delivered in September 1992. In the
same month, our Kendall Square
machine was expanded to a 64-
processor KSR-1. This Kendall Square
machine was an important component
of our computing capabilities until
August 1997.

Using the XP/S 35 as our com-
puting “workhorse,” we had achieved
an initial goal: we could solve very

large-scale and formidable problems,
often called Grand Challenges. Also,
we could utilize to great advantage the
excellent computational environment
we had assembled. The small XP/S 5
was a machine for code development,
initiating users into the realities of
parallel computing, and system and
computational experiments. The XP/S
35 was reserved for those who had
demonstrated the requisite level of
expertise and were prepared for major
computational projects. To preserve
this highly effective arrangement and
to extend our computing capabilities,
we renegotiated the contract with Intel
SSD in early 1994 to make the XP/S
35 a permanent CCS machine and to
increase its memory to 32 MB per
node. Preserving this hierarchical
machine arrangement has been a major
factor in the success of CCS.

At this point, Intel modified the
structure of its forefront Paragon nodes
to the multi-processor (MP) form—
three processors per node, two for
computing and one for message
passing. This is the architecture of the
XP/S 150: 1024 MP nodes, each with
at least 64 MB of memory, with mesh
connectivity as is illustrated in Fig. 1.
As part of the aforementioned
CRADA, we began receiving an MP
node machine in May 1994, thereby
providing our users an opportunity to
familiarize themselves with and develop
strategies for more effectively using the
soon-to-be available XP/S 150.

Our initial plan was fully
implemented on January 4, 1995, when
Intel delivered the Intel Paragon XP/S
150 to CCS following successful
completion of an arduous set of
acceptance tests. Now we have a
computer that can do 150 billion
mathematical operations per second.
But the capabilities in high-
performance computing and scientific
expectations are escalating rapidly.
Accordingly, we are currently
discussing with DOE the purchase of a

Oak Ridge National Laboratory REVIEW

An important national goal in
transportation is to design an
automobile that travels three times
farther on a tank of fuel than the
average car today, yet emits virtually
no pollutants. Leaner, cleaner cars now
being designed would be made of
materials lighter than the steels used
today—materials such as aluminum,
magnesium, and plastic composites.
One safety question of great interest is
whether a properly designed car made
of these lighter materials would be as
resistant to damage in a collision as
vehicles made of steel. Using CCS
computers at CCII to simulate
automobile performance involving cars
made of various materials, scientists
are addressing questions related to
vehicle safety, fuel efficiency, and
emissions.

Researchers at the U.S. Department
of Transportation are collaborating
with ORNL researchers to evaluate
simulation capabilities for automobile
performance modeling using high-
performance parallel computers; to
evaluate new algorithms and material
models for advanced structural
materials being developed at ORNL:
and to evaluate biomechanical

o f © z=ffects of safety
systems, such as air bags, on human
models during automobile collisions.
(This activity is discussed in more
detail in the article “Analysis of
Material Performance in Automotive
Applications™ by Srdan Simunovic,
Gus Aramayo, and Thomas Zacharia,
starting on p. 100.) Several different
collision scenarios are being modeled
to explore and optimize vehicle
simulations. These simulations use a
massively parallel, finite element
analysis program. The program
calculates vehicle accelerations,
velocities, deformations, and forces,
taking into consideration variables

Numbers Three and Four, 1997

¢ l’s Computational

such as different materials, impact
interactions. complex constraints, and
spot welds. The results of this
collaborative research will produce
accurate vehicle and material models
that can be used to evaluate the
performance of lightweight materials
in vehicles with respect to safety and
fuel efficiency.

ORNL scientists and collaborators
are developing better computational
tools for modeling the complex
physical processes in internal
combustion engines. These tools will
help the automobile and power
generation industries design engines
with improved fuel efficiency and
lower emissions of harmful
combustion by-products. CCII users
are exploring internal combustion
engine simulation using models
developed for the KIVA computer
program. KIVA is a computer model
that analyzes the coupled fluid
dynamics, fuel spray dynamics,
combustion and pollution formation
reactions. and heat transfer in an
engine cylinder. It is a widely used
analysis tool within the industry.
(KIVA is discussed in more detail in
the article “Computational Engine
Modeling” by Osman Yagar, starting
on p. 116.) By applying the
processing power of the Intel Paragon
XP/S 150, more realistic engine
models that take into account the
physics of the process can be
developed to explore operational
regimes that may reduce emissions of
nitrogen oxides. Researchers from
Samsung Advanced Institute of
Technology investigated
computational engine modeling after
being taught general parallel
computational techniques during their

ation

three-month stay at CCII in the spring
of 1996.

The accumulation of ice on wings
has been considered a contributing
cause of several crashes of commuter
airplanes. Ice accretion on airfoils
(surfaces of a wing. propeller blade, or
rudder, whose shape and orientation
control stability, direction, lift, thrust,
or propulsion) is being studied by CCII
users at Tennessee State University
(TSU). who have been using CCS
facilities to apply high-performance
computing techniques to several areas
of their research. TSU researchers are
developing and extending a coupled
computational fluid dynamics, heat
transfer, and mass transfer model that
simulates the air flow around an airfoil
under conditions that are conducive to
the formation and buildup of ice
deposits. Improving models of ice
buildup on airfoils may help research-
ers determine design and operational
parameters that reduce the adverse
aerodynamic effects caused by the ice.

Other projects under way at CCII
involve computational chemistry,
materials processing and design,
engineering design, nuclear reactor
modeling, and manufacturing strategies.
Additional companies are joining the
center, and still more. upon learning of
CCII capabilities and accomplishments,
are considering membership. By calling
upon the capabilities and systems
provided by CCS to help open doors to
industry, CCII is helping to meet an
important need of U.S. industry—
computational tools and skills for
economically designing safer and more
efficient new products, improving the
competitiveness of American industry
in the world marketplace.

:Vis zc (i

1 1990, the Visuvalization Lab at

JRNL (see the Review, Vol. 23,

lo. 2. 1990), dubbed the VizLab,
was formed to help ORNL researchers
develop scientific visualizations of
their data and results of their
calculations. The VizLab then was part
of the Graphics Development Section
of Martin Marietta Energy Systems,
Inc. Our primary mission was to
acquire and demonstrate visualization
technology, educate ORNL users, and
provide proof-of-principle visuali-
zations for researchers to justify the
use of such technology in their own
work. Visualization was promoted as a
tool for science.

In 1994, ORNL’s Center for
Computational Sciences (CCS), which
is part of what is now Lockheed
Martin Energy Research Corporation,
absorbed the Visualization Lab
because of the unique fit between its
ongoing computational science
interests and the VizLab's capabilities.
With the mission of ORNL in mind,
the VizLab now focuses on being a key
participant in the scientific discovery
process. By providing state-of-the-art
visualization hardware, software, and
techniques. the VizLab partners with
scientists to augment their
investigations. This focus has enabled
the VizLab to contribute to ORNL’s
awareness of the importance of
visualization. In addition, researchers
trom most ORNL divisions have taken
advantage of the VizLab's resources to
produce significant results.

Through CCS we have had the
opportunity to work on numerous
ORNL projects in areas such as
materials science, groundwater
remediation, car crash safety, and
nanotechnology. One such project was
with Malcolm Stocks of the Metals
and Ceramics Division, who conducted
a study of the magnetic properties of
alloys. The VizLab was able to
visualize a lattice of copper and nickel
atoms with vectors attached to each

™
9]

atom (see back cover). Each vector
represented the magnitude and direction
of the atom’s magnetic moment. As
these vectors changed over time, an
animation was created that was useful
in helping researchers understand the
unique magnetic behavior of the alloy.

The roots of computer-based
visualization and virtual (immersive)
reality can be traced to such pioneers as
Ivan Sutherland in the 1960s. Suther-
land, viewed by many as the father of
computer graphics, cofounded Evans
and Sutherland Computer Corporation.
His research contributed early to the
development of military flight simula-
tors. Since that time, visualization has
had an ever more pronounced effect on
scientific discovery at research
institutions around the world. (For
examples of discoveries in which
ORNL visualizations played a role, see
Figs. 1. 2. and 3.) From its early use in
simulating terrain navigation.
visualization has affected the very
scientific method it serves. Computer-
assisted visualization has become
commonplace and has been used
advantageously in nearly every type of
research. Now, we hardly consider how
this silicon and software-based
technology has changed the process in
which it is embedded. Examples of
visualization can be readily found in
microscopy, earth sciences. materials
science, and every discipline in
between. Today, the interpretation of
visual results often determines whether
an experiment is continued, terminated,
or modified and restarted.

This fundamental change in the
experimental process has occurred only
partly because of the availability of
computing technology. Another
important contributing factor has been

the rapid reduction of computer prices,
which has encouraged researchers to
use computers to integrate with or even
replace more traditional equipment in
their labs. Recent reductions in federal
research funding have aroused
increased interest in purchasing low-
priced, graphics-capable computers for
experimental laboratories.

Visualization has been intimately
linked to high-performance computing
since its advent in the 1970s. Whether
they employ large monolithic
Processors, vector processors,
massively parallel processors, or
combinations thereof, high-
performance computing engines have
one consistent trait—Ilots of data. A
1989 report funded by the National
Science Foundation entitled
Visualization in Scientific Computing
states, “The human brain cannot

ret gigabytes of data each day, so
much inf tion goes to waste.”
Since the publication of that report and
because of continued advances in
computer performance, it is reasonable
to replace the prefix “giga” with
higher-order prefixes such as “tera” or
even “peta.” Future advances along the
computational power curve will
undoubtedly result in even larger data
volumes, necessitating increased
reliance on new visualization and
multisensory techniques for
interpretation.

Visualization is critical to the
operation of these computing
environments in a manner that is
effective for researchers. Visualization
has a role not only in understanding the
results of a computer simulation once
it has concluded but also in viewing

Oak Ridge National Laboratory REVIEW

x/y graphs to complex virtual reality
environments. Images produced using
3D bar charts, contour plots, iso-
surfaces, molecular models, 2D cutting
planes for 3D volumetric data, vector
flow fields, and particle tracing can
greatly enhance the understanding of
science. We choose the best technique
for presenting as much data as possible
in an image without confusing or

distorting the original data. In addition,

annotation is important for clarifying
what the scientist is trying to
communicate. Just as a *“picture is
worth a thousand words,” so is a
picture worth millions of numbers.

Once you have decided what you
want to visualize and how to convey
your meaning to your intended
audience, you have to consider how to
achieve your end product.
Visualization is an activity that is
highly leveraged by hardware and
software. The availability of different
software tools and the appropriateness
of computing hardware are the keys to
effective visualization. CCS has made
significant investments in both of these
areas in the quest to create a flexible
visualization environment adaptable to
the needs of ORNL and any of its
affiliate organizations involved in
computational science. These
investments can be categorized as
modeling, rendering, and animation on
the software side; the principal
hardware components include graphics
generation, networking, and storage
equipment. These elements do not
make up the entire visualization
infrastructure of CCS. However, they
represent most of the major functional
categories of a CCS visualization
infrastructure that has successfully
helped facilitate collaborative
computational science activities

24

involving ORNL. other national
laboratories, universities, and industrial
centers.

Modeling for visualization is not to
be confused with modeling a physical
process. The goal of the former is to
meaningfully represent data produced
by the latter using any of a variety of
software packages.

One way of classifying these
packages is by the maximum spatial
dimensionality of the data represen-
tations they can produce. The packages
mentioned in this article are not the
only solutions, but we have proven to
ourselves that they are well suited to
particular visualization needs.
Interactive Data Language (IDL) is an
excellent package for looking at one-
dimensional (e.g., x/v charts) and 2D
data (images). IDL also has an
animation capability for revealing how
particular data change over time.
Advanced Visual Systems (AVS) is
another package that can be used for
these types of data, but it is rather lean
in its annotation capability. Where AVS
really shines is in its flexibility in
combining different visual cues into a
complex but cohesive visualization
application that can handle time-
transient data. On the high end, we use
the Wavefront Advanced Visualizer
package to import complex 3D models
(e.g., car bodies or manufactured parts)
or to build from scratch models that are
compositions of large numbers of
simple geometric primitives such as
triangles, polygons, and hexahedra.

Rendering is the process of creating
a realistic view of a 3D scene for
projection onto a 2D computer screen.
To do this effectively, all factors that
affect a particular view of the world
should be considered, including
surface smoothness, light intensities,
perspective, and reflectance. AVS has a
rudimentary rendering capability, but it
ignores some ingredients of realistic
scenes, such as shadows. Wavefront
Advanced Visualizer has an excellent

renderer for creating photo-realistic
scenes. The tradeoff, of course, is that
rendering a complex scene with this
degree of realism takes longer—up to
half a day on a mid-range workstation.

Ensuring that the visualization end
product meets but does not exceed the
need is critical for precisely this
reason. A rough-cut visualization of
airflow over a wireframe model of an
aircraft wing is quite sufficient for on-
screen inspection by a team of
researchers working in close physical
proximity. Save the half-day
renderings for audiences at
conferences and meetings with
program sponsors. At these venues, the
important technical points have been
identified in advance, possibly through
visualization. The degree of
visualization “polish” needed for these
purposes typically goes beyond that
needed during scientific exploration.

Animation enables the use of
physical time to look at a particular
data parameter. Animation of a time-
transient 3D problem is, for this
reason, considered to be four-
dimensional visualization. Often the
animation parameter is the time step or
iteration of the simulation that
produced the data, but any data
parameter can be suitable. For
example, geologic core sample data
could be animated as a function of the
depth of the sample, possibly isolating
a particular mineral in a slice of the
core sample in a manner difficult to
produce using other techniques, such
as isosurfacing.

We employ a number of animation
tools in the VizLab for handling
various animation file formats.
Hardware support of graphics varies
greatly from workstation to
workstation. The graphics engines used
in the CCS VizLab range from single-
processor Macintoshes to high-
performance multiprocessor Silicon
Graphics workstations. A number of
our workstations have specialized chip

Oak Ridge National Laboratory REVIEW

N
a |

Sc

extension of visualization. A tool for
understanding high-volume and
complex technical data, it involves the
visual sense and often requires high-
performance graphics. However,
immersive reality differs from
visualization because it appeals to
more than just the visual sense to
enhance understanding. It delivers
realistic stimuli to the senses—
especially sight, hearing, and touch—
and minimizes overall system latency.

Immersive reality was originally
developed by the military as a way to
give personnel experience in varied,
high-stress environments without
exposing them to potential harm. More
recently, it has been used as a way to
experience theoretical circumstances
and proposed products prior to their
manufacture.

Specialized input/output hardware,
some unique to immersive reality, has
evolved for working in simulated

28

worlds. Head-mounted displays
(HMDs) are used to deliver stereo
views of a 3D scene to the user.
Navigation, pointing, and selection are
handled by various hand-oriented input
devices. Both HMDs and hand input
devices use embedded positioning
devices known as trackers to
communicate location to the computer.
The computer generates views of the
3D scene that are appropriate for the
tracked position and actions.

Sound is useful as both an input and
output medium. Although several
systems exist for receiving and
interpreting voice commands for the
computer, each has a practical
vocabulary limitation of several
hundred words. The systems must be
programmed to understand the speech
nuances of the user, such as accent,
pronunciation, and tempo. Directional
sound can be simulated by replicating
a sound across several speakers and

varying the amplitude between
speakers.

A recent development in immersive
reality is the availability of haptic, or
touch, devices. These devices simulate
the sense of feel through various means.
The most effective of these uses a
motorized, articulated arm. By varying
the resistance of one or more degrees of
freedom of the arm, you can simulate
properties such as gravity and kinetic
energy.

Our foremost near-term goal is the
development of visualization as an
element of seamless computing
environments. Interfaces that trans-
parently enable derivation of meaning
from and control of computing
processes is critical to visualization’s
role as a research tool. We are con-
tinuing to investigate and integrate new

products into our lab for
immersive exploration of
scientific worlds. We are also
interested in exploring Web-
based technologies, especially
those that fully support 3D.
Java and VRML have
particularly interesting features
for distributing visualization and
immersive reality applications.
Lastly. we are keenly interested
in robust software that can be
integrated with our visuali-
zation tools. The value of these
tools will be measured by the
extent to which they enable our
collaborators to dynamically
modify the worlds they see and
the way they see them.
Ultimately, our future research
will be driven by the tools that
offer the greatest contribution to
the evolving cycle of scientific
discovery through visualization
of computational and
experimental results.

Oak Ridge National Laboratory REVIEW

numerical analysis, and visualization
to take this spatially sparse set (about
90 values per time step) of temperature
history at more than 8000 time steps.
For each time step the temperature
distribution is approximated through-
out a 64 X 64 x 64 volume with an
isosurface representing the melt front
in the soil, as shown in Fig. 3. The data
are visually represented as a set of
spheres for each thermocouple
(colored for temperature), cylinders
showing the position at each time step
of the graphite rods, and a surface
showing the melt front. The researcher
can then interact with this visual
representation of data either by
rotating the image or by selecting a
viewing position interactively and
observing the development of the melt
front over time as an animation.

The entertainment industry is
becoming one of the leading users of
computers, as a medium for creating
their art; in fact, the special effects
industry is transforming computer
visualization. The computer provides a
great deal of flexibility for rendering
and doing precise drawings, making it
very easy to make changes. A highly
visible modeling effort involving the
definition of a mesh to describe a face
and the manipulation of this mesh to
animate facial features is evident in the
movie Toy Story. At ORNL a current
exploratory project in computational
forensics is seeking to develop the
tools to automate the facial recognition
process. The idea is to use the
computer to reconstruct the face of a
mutilated or decaying body based upon
skull measurements in the hope of
identifying an unknown victim and
possibly the killer.

34

Ed Uberbacher, head of ORNL’s
Computational Biosciences Section,
Richard Mural of the Life Sciences
Division, and Reinhold Mann, director
of the Life Sciences Division, have
created a database of facial tissue-
thickness data using measurements
from magnetic resonance imaging
scans of living volunteers. Researchers
in ORNL's Informatics Group are
developing neural network techniques
to predict skin thickness at a number
of marker points on a human skull.
Instead of basing the reconstruction on
only a dozen or so points, they used the
computer to plot thousands of points,
so the surfaces of the face would be
mathematically based on the shape of
the entire skull, not just a few
landmark points directly below the
skin. Researchers in the Visual and
Information Sciences Group use these
points to generate a mesh for the skin
surface and then to smooth, color, and
texture-map this surface for realism, as
shown in Fig. 4. This approach is being
used to support experimental
perception research being done to
understand the critical factors for facial
recognition, a project being explored
within the Human Systems Research
Group. This interdisciplinary team
hopes to create a prototype of the
process used to automate the
generation of facial features, which the
user could control mathematically, thus
improving the chances of a
reconstructed face being recognized.

Visual analysis of time series data
becomes very difficult as large
quantities of data are generated.
Statistical techniques developed by
George Ostrouchov, Darryl Downing,
Max Morris, and Val Fedorov, all of the
Statistics Group, can be used to extract

useful or interesting information from
data sets too large for normal browsing.
A researcher cannot effectively monitor
large data streams and pick out regions
of interest. To allow automated
monitoring and subsequent user
browsing of interesting regions, a
visual interface was created which
incorporates statistical filters to “score”
the data, store the data around the
region of interest into an underlying
database, and present the user with a

Oak Ridge National Laboratory REVIEW

Algorithm

promise to reduce the complexity of
parallel programming.

3 TO; n v
e Until recently, all com-
puters on a network were considered
separate units connected merely to
allow users to transfer files and send
electronic mail to each other. Today,
researchers in high-performance
computing are combining computers
on the network in such a way that users
can exploit their aggregate
performance and memory to run a
single parallel application.

A collection of computers that
differ in their architecture or in their
method of representing data are called
heterogeneous. Heterogeneous
network computing offers several
advantages over large-scale parallel
computers:

Cost is reduced by using existing
hardware, usually a collection of
workstations.

¢ Performance can be improved by
assigning each individual task to
the most appropriate architec-
ture.

Development and debugging use
the familiar tools running on the
user’s personal workstation.

e User-level or program-level fault
tolerance (the ability to operate
continuously in the event of a
failure) can be implemented
either in the application or in the
underlying operating system.

On the other hand, getting hetero-
geneous computers to communicate
and cooperate with each other is a
challenging computer science problem.

To solve this problem, ORNL's
distributed computing research project,
in collaboration with the University of
Tennessee at Knoxville (UTK),
produced the Parallel Virtual Machine
(PVM) software package. PVM
permits a heterogeneous collection of

40

puters

computers linked by a network to be
used as a single large parallel computer.

PVM enables users to exploit their
existing computer hardware to solve
much larger problems at minimal
additional cost. The software and
documentation are available from the
World Wide Web site listed at the end
of this article. ORNL researchers are
continuing to explore the frontiers of
distributed computing, working on
security. fault tolerance, high-speed
asynchronous transfer mode (ATM)
networks, and graphical interfaces to
assist users in programming for
distributed computing.

Today, hundreds of sites around the
world are using PVM to solve impor-
tant scientific, industrial, and medical
problems. Automotive, aerospace,
chemical, computer, environmental,
medical. pharmaceutical, and oil
companies are all using this software
as a cost-effective way to design new
products. DOE national laboratories.
National Science Foundation
supercomputer centers, and National
Aeronautics and Space Administration
research centers, as well as numerous
universities around the country, are
using PVM both for research and as a
teaching tool. With thousands of users,
PVM has become the de facto standard
for distributed computing worldwide.

assing
model is a programming paradigm
used widely on parallel computers and
on networks of workstations. The basic
concept of communicating through
messages is well understood, and over
the past 10 years, many significant
applications have been recast into this
paradigm. More recently, several
public-domain systems have demon-
strated that a message-passing system
can be implemented efficiently and
portably.

Message passing is used to specify
the communication among a set of

processes forming a concurrent
program. The message-passing
paradigm is attractive because it is
portable and scalable. Message passing
is compatible with distributed-memory
multicomputers, shared-memory
multiprocessors, networks of
workstations, and combinations of
these elements. Many diverse message-
passing systems were developed, but
until 1994, no standard was agreed
upon.

In 1992, ORNL and UTK spear-
headed an international effort to define
a standard interface for message
passing. The effort involved more than
80 people from approximately 40
organizations from the United States,
Asia, and Europe, including computer
vendors and researchers from
universities, government laboratories,
and industry. This effort recently
culminated in the publication of the
Message-Passing Interface (MPI)
standard.

The MPI standard defines the
syntax and semantics of a core of
library routines useful to a wide range
of users writing portable message-
passing programs in Fortran 77 or C.
MPI also forms a possible target for
compilers of languages such as High-
Performance Fortran. Both commercial
and public-domain implementations of
MPI exist. These run both on tightly
coupled. massively parallel processors
and on networks of workstations.

g : The
Intel Paragon XP/S 150 at ORNL’s
Center for Computational Sciences
consists of a collection of processors,
each with its own local memory,
connected by a high-speed communi-
cation network. The processors
coordinate the computation and
exchange of data via message passing.
However, efficient coding for these
processors requires careful
decomposition of data structures and
explicit calls to pass data among
Processors.

Oak Ridge National Laboratory REVIEW

LINPACK tests. Recently, motivated by
a growing concern in the supercompu-
ting community that existing bench-
marks are too simplistic to fully repre-
sent scientific computing, researchers
have attempted to define new standards.
These efforts include the ParkBench
activity, initiated by researchers at
ORNL and UTK, and the System
Performance Evaluation Cooperative
(SPEC) project.

: rmance evaluation
methodology. While benchmarking is
primarily concerned with performance
measurement, the performance evalua-
tion process also involves deciding
which benchmark (and other perfor-
mance) data to collect and how to use it
to answer specific performance-related
questions.

For example, the performance eval-
uation of a computer system may deter-
mine whether the system is an appro-
priate platform for some given task or
for a given workload (set of application
programs or tasks). This type of evalua-
tion is a crucial part of the procurement
process, identifying which computer
system to purchase or buy time on. If a
particular computer system cannot do
the required job in the required time, its
cost does not matter.

Performance evaluation can also be
used to identify how components of the
computer system interact. Such evalua-
tion is important in identifying which
compc - -nts are most limiting to perfor-
mance and how they might be modified
to improve performance. Similarly,
evaluation activities are important for
providing guidance in the use of the
computer, identifying what the compu-
ter is good at doing, and which tasks
are expensive to perform (and should
be avoided or minimized). For example,
on distributed-memory machines like
the Intel Paragon or IBM SP2, there is
a range of costs in accessing data,
depending on where those data current-
ly reside: in the local memory of the
processor that is scheduled to use the
data, in the local memory associated

Numbers Three and Four, 1997

with a different processor but that is
accessible via a fast network connection,
or in some storage device that is
accessible only via a slower network
connection. Programming to take ad-
vantage of data locality (assigning data
to the local memory of processors that
are most likely to need the data) is
generally a good idea but is not always
possible or may require costly restruc-
turing of an existing program. Under-
standing the relative costs of accessing
data from different levels of the
memory hierarchy can indicate how
important it is to exploit locality (and
minimize accesses to nonlocal data).

The evaluation process examines the
computer system at a variety of levels.
In low-level tests, the individual ele-
ments of the system are exercised—for
example, determining how quickly a
processor can compute a result, or
determining how quickly a processor
can access data from local memory,
from nonlocal memory, or from an
external storage device. These tests try
to determine not only peak performance
(the best that can be achieved), but also
the performance that is typically
achieved, and what factors distinguish
between peak and typical performance.

The next level is kernel performance:
looking at the ability of the system to
solve common algorithmic problems or
execute system functions. Here, the
focus is on seeing how quickly a single
processor can calculate, say, a matrix-
matrix multiplication or compute a fast
Fourier transform, how quickly a group
of processors might accomplish the
same or larger versions of these tasks,
and how quickly one processor can
broadcast data to all of the other pro-
cessors. The reason behind the perfor-
mance of a given kernel may not always
be clear from these tests, but the kernels
are chosen to be important functions
whose execution time is of intrinsic
interest.

The final level is performance of
application programs. Initially, these

are programs in the required workload
that are just being ported to the new
system, or they are already ported and
optimized programs that are
representative of the programs in the
workload. For the first type of program,
the performance reflects the minimum
that can be achieved, but if these
application programs cannot or will not
be modified, their performance is the
most (or only) relevant measurement in
the evaluation process. Usually,
however, programs will be adapted to
make better use of the computer system
over time, and the kernel and low-level
performance measurements can be used
to indicate how much improvement is
possible. The application program tests
are also the best evaluation of the
compilers, which have been the weakest
component in some high-performance
computer systems. It is frustrating for
an application developer to have access
to a fast computer system, only to find
that the compilers perform so poorly on
application programs that the desired
performance is not achieved. For
example, Fig. 3 shows megaflops per
processor as a function of the number
of processors for a climate-related
parallel application code run on the
Intel Paragon, the IBM SP2, and the
Cray Research T3D.

The relative “flatness” of the curves
for the Paragon indicates good scalabil-
ity—that is, per-processor performance
is retained when the number of proces-
sors increases. One implication of these
results 1s that the interconnection net-
work is fast, and communication costs
are manageable. However, the Paragon
results also indicate poor performance
for the compiled Fortran code when
compared to the peak performance of
the microprocessors. The results for the
SP2 and T3D show better per-processor
absolute performance, but are approxi-
mately the same fraction of the peak rate
for the underlying microprocessor.

A recent addition to the evaluation
process is the evaluation of different

43

the ability of the software to make
effective use of additional computa-
tional resources as the problem size
increases: in a highly scalable
algorithm, computational efficiency is
preserved as the problem size and
number of processors increase
together. ScaLAPACK and LAPACK
both perform dense linear algebra
computations. These sorts of
computations involve matrices in
which most of the entries are nonzero,
contrasting with sparse matrices,
discussed in the next section. in which
a significant fraction of the entries are
zero. ScaLAPACK is designed to
achieve good performance while being
easy to use and simple to port between
different computers. Dense linear
algebra is important in a number of
areas, particularly in the DOE Grand
Challenge in materials science, where
it has been used to investigate mag-
netic moment formation and stability
in magnet materials. These types of
materials are used in magnetic motors,
data storage devices, and recording
media, representing billions of dollars
in annual revenues. In addition, dense
linear algebra problems arise in
boundary integral methods used in
computing water flow past ships and
ocean structures (such as oil rigs) and
in solving electromagnetic scattering
problems. Both LAPACK and
ScalLAPACK are being used to help
computational scientists solve these
and other Grand Challenge problems.
The memory of high-performance
computers consists of several hier-
archical layers, each with a different
access time. Usually layers that have
more memory take longer to access.
The uppermost levels are the registers
that can be accessed most rapidly. The
next levels are cached memory and
main memory. In addition, on a
parallel computer, nonlocal memory
residing on a remote processor
represents another memory layer.

48

The performance of an application
depends on how data are accessed in
these different layers. To get good
performance, we want to move as little
data as possible between different
layers of memory. Where data move-
ment is necessary, we move it in a few
big chunks. rather than in many small
chunks. These considerations are
central to the design of ScaLAPACK
and LAPACK, thus leading to the
formulation of most library routines as
block-partitioned algorithms. In block-
partitioned algorithms, most of the
work involves operations on two or
more matrices, resulting in the
efficient use of the memory hierarchy.

A dense linear algebra problem
typically involves matrices and
vectors. On a parallel computer, these
data must be split up and assigned to
different processors so that each
processor can perform its particular
part of the problem. The data
distribution must be done carefully to
make sure that each processor has the
same amount of work to do in each
phase of an application. If some
processors have more work to do, then
other processors may have to wait
while they “catch up.” This situation,
known as load imbalance, results in
poorer performance. In ScaLAPACK.,
matrices and vectors are distributed
over processors using a block-cyclic
data distribution. In the block-cyclic
data distribution of a matrix, the data
assigned to a particular process are not
contiguous but are scattered in a
regular way over the whole matrix.
This arrangement ensures that good
load™ * ice is maintained in the
major parts of an algorithm.

Good performance is not the only
goal in designing a software library. It
must also be portable and easy to use.
One problem in using distributed
memory parallel computers is that
each processor has its own local
memory that is separate from the other
processors; therefore, it knows only

about its own data—that is, the local
portions of the matrices and vectors
that have been assigned to it by the data
distribution. A processor cannot
directly refer to part of a matrix on
another processor.

ScaLAPACK is easy to use because
matrices and vectors are referenced as
global objects. Thus, when referring to
a particular matrix entry, we can use
global indices, rather than specifying it
by giving the processor number and the
local indices. This makes programming
with ScaLAPACK much easier, and the
resulting code looks very similar to the
sequential version using LAPACK.

ScaLAPACK addresses the issue of
portability by constructing the library
routines out of lower-level components.
Most computations on a single
processor are performed using the basic
linear algebra subprograms (BLAS).
These routines are widely available,
and on many platforms have been
optimized to give very high perfor-
mance. Message passing between
processors is done using the basic
linear algebra communication
subprograms (BLACS). Versions of
BLACS have been written based on the
parallel virtual machine (PVM) and
message-passing interface (MPI), as
well as for the native message-passing
systems of a number of parallel
computers. The parallel BLAS
(PBLAS) are parallel versions of most
of the operations available in BLAS,
and they are based on BLAS and
BLACS. PBLAS make it easier for
library designers to extend
ScaLAPACK to include new
algorithms. ScaLAPACK is constructed
using BLAS, PBLAS, and BLACS as
building blocks; it is therefore portable
to essentially any computer that uses
PVM or MPL. Since its first release into
the public domain in December 1994,
more than 1000 copies of the
ScalLAPACK software have been
distributed. Current work is extending
ScalLAPACK to include out-of-core

Ocak Ridge National Laboratory REVIEW

routines and other types of matrices,
such as banded matrices. Further
information is available on the World
Wide Web at http://www.netlib. org/
scalapack/.

When an automobile, airplane,
space shuttle, or rocket is in motion, it
inevitably undergoes stresses and
strains induced by a significant amount
of vibration. Can a next-generation
automobile, airplane, space shuttle, or
rocket be designed to be more reliable
than today’s models under such
conditions? This question is extremely
important because the cost of building
cars must be very low, while the cost
of building aircraft and spacecraft will
be very high. How do scientists and
engineers study this type of problem?
One solution is to build prototypes,
perform experiments with the
prototypes, and construct models to
analyze the experimental results. The
experimental results will allow
scientists to adjust the parameters of
the models so that new and improved
prototypes can be built. This iterative
process eventually converges on
prototypes that will survive the
experiments. The ultimate products are
then constructed on the basis of the
prototypes. This is one essential
application of structural dynamics.

Structural dynamics modeling is
computationally intensive. We have
been working with researchers in the
Structural Dynamics and Vibration
Group at Sandia National Laboratories
to help them improve the efficiency of
their modeling effort. Our efforts have
met with much success.

The heart of many structural
dynamics applications is a numerical
linear algebra problem. and the Sandia
modeling effort is no exception.
Ultimately, the overwhelming majority

Numbers Three and Four, 1997

of the total computer time is spent in a
small number of linear algebra routines
that solve symmetric, positive, definite
systems of linear equations, where the
coefficient matrices are large and have
relatively few nonzero entries; such
matrices are said to be sparse. Routines
such as these, which are critical to the
overall performance of the modeling
software, are known as the key kernels
within the software.

Efficient solution of sparse linear
systems requires careful exploitation
and preservation of the zero entries in
the coefficient matrices. The way in
which we solve such linear systems is
to factorize each coefficient matrix into
the product of two triangular matrices.
The solution to each of the original
linear systems can then be obtained by
solving two triangular linear systems.
An important note about this approach
is that extra nonzero entries, or fill
entries, are introduced into the
triangular factors during the factori-
zation. Thus, a crucial step in the
solution process is to arrange the
computation so that the number of fill
entries is small.

Variable-banded methods, or profile
methods, which attempt to limit fill
entries around the diagonal of a matrix,
are commonly used to solve the linear
systems in many structural analysis
applications. Such a linear-system
solver was originally incorporated into
Sandia’s structural dynamics modeling
code. Unfortunately, these solvers do
not make efficient use of either storage
or computing time; consequently, the
modeling software originally could
deal effectively only with models too
small to be of practical interest to
scientists and engineers.

Fortunately, however, much better
technology now exists to solve linear
systems of this kind. General sparse
solvers. which employ new techniques
to limit the number of fill entries
introduced and to take advantage of

the sparsity pattern, have proven very
effective on modern workstations and
vector supercomputers, especially after
dense matrix operations have been
incorporated into the solution method
to exploit the memory hierarchies
found on modern uniprocessor
machines. Over the past few years, we
have further improved the algorithms
on which this technology is based, and
then we developed a sparse linear-
system solver based on the new algo-
rithms. As an illustration of advances
in sparse matrix technology, a good
implementation of one of the profile
methods factors a sparse, symmetric,
positive definite matrix of order 19,600
in 51.49 s on an IBM RS/6000 work-
station; our solver takes only 3.24 s to
factor the same matrix on the same
machine. The number of matrix
elements stored in the profile method is
more than 3 million, but our sparse
matrix code stores fewer than 1 million
matrix elements. More examples are
provided in Figs. 1 and 2. Figure 1
compares the numbers of matrix
elements stored and manipulated in a
profile method (RCM) and in a method
(MD) that uses the minimum-degree
algorithm to reduce fill. Figure 2
compares the times required to factor
the matrices in RCM and MD,; the
difference between MD and MD/B is
that MD does not exploit dense matrix
operations while MD/B does. The
matrices were derived from finite
element discretizations of a square
domain; their dimensions range from
10,000 to 40.000.

We have been working with Sandia
researchers to incorporate our new fast,
sparse linear-system solver in a large-
scale structural dynamics modeling
effort. Incorporation of our package
into the modeling software enabled it
to solve large problems of interest to
scientists and engineers. This approach
increased the problem size that can be
dealt with in an effective manner and

49

convergence toward a solution. Espe-
cially for long-running simulations, it can
save countless hours waiting for results
that might have gone awry in the first
few moments of the run. Once connected,
the scientists each view the simulation
from their own perspective, receiving a
steady sequence of “snapshots” of the
program data that is of interest to them.
CUMULVS supports a variety of
visualization systems for viewing these
snapshots, from commercial packages
such as AVS, to public domain inter-
faces such as Tcl/Tk (developed at Sun
Microsystems). CUMULVS takes care
of the many complicated tasks of
collecting information and coordinating
communication between the various
viewers and the simulation program.
The result is a single. simple picture of
the computation space, presented as a
uniform field of data even if the actual
data are distributed across a set of
parallel tasks.

Scientists can use CUMULVS for
collaborative “‘computational steering”
in which certain parameters of a
physical simulation or of an algorithm
can be adjusted while the program is
running. In a typical scenario, several
scientists would attach to a simulation
to view its progress. One of them might
discover that something has gone
wrong or is heading in the wrong
direction. For example, if they were
trying to synthesize a new material,
they might decide the cooling rate must
be changed to make the material
stronger. At this point the scientist
could adjust, or “steer,” certain physical
or algorithmic features to try to fix the
simulation, or the simulation could
simply be restarted with a new set of
inputs (such as an altered cooling rate).
This type of interaction can save
immense amounts of time by shortening
the experimentation cycle. The scientist

56

55,

need not wait for the entire simulation
to be completed before making the next
adjustment. CUMULVS provides
mechanisms that allow groups of
scientists to cooperatively manipulate a
simulation, with automatic locking
capabilities that are invoked to prevent
conflicting steering requests for any
single parameter. Although only one
scientist at a time can adjust the value
of any single parameter, any number of
different parameters can all be adjusted
simultaneously.

To interact with a simulation using
CUMULVS, the simulation program
must be instrumented to describe the
primary computational data fields and
algorithmic or physical parameters.
These special declarations consist of
the data type. the size and cardinality
of arrays, and any distributed data
decompositions. CUMULVS needs
declarations only for the data that are
to be viewed and the parameters that
are to be steered. At the point in the
simulation where the data values are
deemed “valid.” a single library call is
made to temporarily pass control to
CUMULVS. Here, any pending viewer
requests are handled and any steering
parameter updates are processed. If no
viewers are attached, this library call
carries only the overhead to check once
for an incoming message, so that there
is negligible intrusion to the simulation.

The various communication
protocols that CUMULVS uses to
coordinate the interactions between the
viewers and the simulation are tolerant
to computer faults and network failures.
In addition, CUMULVS provides a
“checkpointing” mechanism for making
the simulation program itself fault-
tolerant. Using this mechanism, the
state of a simulation program can be
saved periodically. Then the data stored
in the checkpoint can be used to auto-
matically restart the simulation if a
computer node should crash or if a
network should fail. CUMULVS
checkpoints can also be used to migrate

parallel simulation tasks across hetero-
geneous computer architectures on the
fly. This capability is typically not
possible with traditional checkpointing
schemes, but CUMULVS uses a special
“user-directed” checkpointing approach.
Because the scientist has precisely
described the data in the simulation
program, CUMULVS has the additional
semantic information necessary to auto-
matically migrate a task using a minimal
amount of information. CUMULVS can
save the state of a simulation task and
then restore it, even if the new task’s
computer is of a different architecture
or data format. Beyond that, CUMULVS
can actually reconfigure an entire
application by reorganizing the
checkpoint data to fit a new data
decomposition. So, a checkpoint saved
on a cluster of workstations can be
restarted to continue executing on a
large parallel machine with many more
nodes, or vice versa.

To better understand the usefulness
of these CUMULVS features, consider
a sample scenario. Suppose you’re an
engineer on a big project team that is
designing a new high-tech jet airplane.
Your job is to make sure that the air
flows smoothly over the wings and
around the engine intakes. If your
design is off by even a small amount,
you might bring down a multimillion-
dollar aircraft, not to mention making a
lifelong enemy out of the poor pilot,
assuming he or she survives.

What you need is some way to
really test out your ideas, try things out
a few different ways, and make sure
you’ve got it right before they start
forming those expensive prototype
airfoils. So you put your expertise to
work, sit down at the computer, and
whip up a computational fluid
dynamics (CFD) simulation of the air
flowing around one of your wings. You
sit back and patiently wait for the

Oak Ridge National Laboratory REVIEW

results. And you wait. And you wait
some more. Whew! Finally, after many
hours of waiting for your program to
converge on a solution, you get the
answer. But something went wrong.
Your wing design didn’t produce the
smooth flow you expected. *“What
happened?” you ask.

With CUMULVS at your side, the
problems with your wing simulation
can easily be revealed. You decide to
apply CUMULVS to the simulation
program to see what’s going wrong. In
your CFD airflow program you add a
few special declarations so that
CUMULVS knows what’s in your
simulation and where. You give your
simulation the name “flow’ so your
viewer can find it. You describe the
main computational data fields,
“pressure” and “density.” You also de-
clare a few of the steerable parameters,
like the “Mach number” and the wing’s
“angle of attack.” After recompiling
your program, you are ready to go.

This time, you start up your
simulation and can immediately attach
a CUMULVS viewer to see what’s
happening. You request the main
“pressure” data field—it’s huge, but
you want to see an overview of the
whole array anyway. You tell
CUMULVS to view the entire region of
computation but at a coarse granularity,
showing only every tenth data point.
Using this smaller collection of data
points for viewing greatly reduces the
intrusion to your simulation, and the
load on your network, while exploring
such an immense dataset. The
CUMULYVS view of “pressure’ appears
as requested, and you begin to watch it
slowly change as the simulation
proceeds. From this high-level view,
you can already see that something
isn’t quite right. It looks like the angle
of attack of the wing is off by a mile.
But it turns out to be a simple program
bug, and you fix it in no time.

Now you’re ready to try again, so
you start up the simulation and connect

Numbers Three and Four, 1997

up with CUMULVS. Your wing looks
much better now, so you disconnect
your viewer and let the simulation run
while you go out to lunch. When you
get back, you connect up again to see
how things are going. The simulation is
working, getting closer to an answer,
but you can see that the performance
of the wing will not be as good as was
hoped. While watching through your
viewer, you tell CUMULVS to adjust
one of the wing model parameters to
see if you can improve the design.
After a moment you see the changes to
the wing appear in your viewer, but it
takes several more iterations before the
effects of the new information begin to
be seen in the simulation results.

After tediously tweaking your
model over the next few hours, you
decide that your simulation program is
just too darn slow. You need to split
your simulation program into smaller,
independent pieces that can run
simultaneously, or “in parallel.” so you
can get the job done faster. With several
different computers all working
together on the problem, your
simulation program might run in
minutes instead of hours. You use a
system like the MPI message-passing
standard or PVM (the Parallel Virtual
Machine system developed jointly at
Emory University, ORNL, and the
University of Tennessee by a team led
by Al Geist at ORNL and Jack
Dongarra at ORNL and the University
of Tennessee, both of whom have also
been instrumental in the development
of MPI). Either of these systems allows
you to write a “parallel program.” You
parallelize the CFD algorithm by
breaking the original calculation down
into “cells,” and then you assign sets
of these cells to a collection of parallel
“tasks” that will cooperate to solve
your problem. After each task finishes

nt

its iteration of work, the tasks will talk
to each other, sending messages among
themselves to share intermediate results
on the way to a solution.

You start up a run of your new
parallel program on a few workstations,
and sure enough, you get the answer
back in a fraction of the time. But
things are way off again. and it’s worse
than before. There's a huge region of
turbulence off the tip of the wing.
Something has gone wrong with the
way you reorganized your simulation
program. “Now what?!” you exclaim.
It’s time for CUMULVS again.

Parallel programming is notoriously
difficult because it lacks the single
thread of control you would have in a
conventional serial program. In
addition, the data used in your parallel
computation are probably spread across
a number of distributed computer
systems. This is done to capitalize on
locality by leveraging faster local data
accesses against more costly remote data
accesses. Often, the data “decompo-
sitions” that make your parallel program
the fastest are the ones that are the most
complicated. CUMULVS helps a great
deal with these complex data decompo-
sitions because it “un-jumbles” the data
and presents them to the scientist in
their original form, as if all of the data
were present on a single computer.

To help CUMULYVS collect the
parallel data in your wing simulation,
you need to enhance the special
declarations that you made for the serial
version. This effort involves defining the
way each data field has been broken
apart and distributed among the parallel
tasks. After adding a few extra lines of
decomposition declarations for
CUMULYVS, you are ready to go.

You start up a fresh parallel wing
simulation and then attach your
CUMULVS viewer to see what is
happening. Sure enough, almost immed-
iately you begin to see turbulence form
off the wing tip. But it’s still not clear to
you why it’s there. Something must be

57

The entire genomes for Haemophilus
influenzae and yeast have also been
fully sequenced, although the signifi-
cance of many genes remains a mystery.
The potential for the discovery of new
enzymes and chemical processes
important for biotechnology (e.g., new
types of degradative enzymes), as well
as new insights into disease-causing
microbes, makes these efforts highly
valuable economically and socially.

The rate of several megabase pairs
per day at which the Human Genome
and microorganism sequencing projects
will soon be producing data will
exceed current sequence analysis
capabilities and infrastructure.
Sequences are already arriving at a rate
and in forms that make analysis very
difficult. For example, a recent posting
of a large clone (large DNA sequence
fragment) by a major genome center
was made in several hundred thousand
base fragments, rather than as one long
sequence. because the sequence
database was unable to input the whole
sequence as a single long entry.
Anyone who wishes to analyze this
sequence to determine which genes are
present must manually “reassemble”
the sequence from these many small
fragments, an absolutely ridiculous
task. The sequences of large genomic
clones are being routinely posted on
the Internet with virtually no comment,
analysis, or interpretation; and
mechanisms for their entry into public-
domain databases are in many cases in-
adequately defined. Valuable sequences
are going unanalyzed because methods
and procedures for handling the data are
lacking and because current methods
for doing analyses are time-consuming
and inconvenient. And in real terms,
the flood of data is just beginning.

Computers can be used very effec-
tively to indicate the location of genes

62

and of regions that control the expres-
sion of genes and to discover relation-
ships between each new sequence and
other known sequences from many
different organisms. This process is
referred to as “sequence annotation.”
Annotation (the elucidation and
description of biologically relevant
features in the sequence) is the
essential prerequisite before the
genome sequence data can become
useful, and the quality with which
annotation is done will directly affect
the value of the sequence. In addition
to considerable organizational issues,
significant computational challenges
must be addressed if DNA sequences
that are produced can be successfully
annotated. It is clear that new
computational methods and a workable
process must be implemented for
effective and timely analysis and
management of these data.

In considering computing related to
the large-scale sequence analysis and
annotation process, it is useful to
examine previously developed models.
Procedures for high-throughput
analysis have been most notably
applied to several microorganisms
(e.g., Haemophilus influenzae and
Mycoplasma genitalium) using
relatively simple methods designed to
facilitate basically a single pass
through the data (a pipeline that
produces a one-time result or report).
However, this is too simple a model for
analyzing genomes as complex as the
human genome. For one thing, the
analysis of genomic sequence regions
needs to be updated continually
through the course of the Genome
Project—the analysis is never really
done. On any given day, new
information relevant to a sequenced
gene may show up in any one of many
databases, and new links to this
information need to be discovered and
presented. Additionally, our capabilities
for analyzing the sequence will change
with time. The analysis of DNA

sequences by computer is a relatively
immature science. and we in the
informatics community will be able to
recognize many features (like gene
regulatory regions) better in a year than
we can now. There will be a significant
advantage in reanalyzing sequences
and updating our knowledge of them
continually as new sequences appear
from many organisms, methods
improve, and databases with relevant
information grow. In this model,
sequence annotation is a living thing
that will develop ri * :ss and improve
in quality over the years. The “single
pass-through pipeline” is simply not
the appropriate model for human
genome analysis, because the rate at
which new and relevant information
appears is staggering.

Researchers at ORNL, LBNL,
Argonne National Laboratory (ANL).
and several other genome laboratories
are teaming to design and implement a
new kind of computational engine for
analysis of large-scale genomic
sequences. This “‘sequence analysis
engine,” which has become a Computa-
tional Grand Challenge problem, will
integrate a suite of tools on high-
performance computing resources and
manage the analysis results. In addition
to the need for state-of-the-art
computers at several supercomputing
centers, this analysis system will require
dynamic and seamless management of
contiguous distributed high-performance
computing processes, efficient parallel
implementations of a number of new
algorithms, complex distributed data
mining operations, and the application
of new inferencing and visualization
methods. A process of analysis that
will be started in this engine will not be
completed for seven to ten years.

Oak Ridge National Laboratory REVIEW

length scales. This type of approach
connects the different modeling efforts
on various length scales. enabling
calculations of materials properties
without performing a laboratory
experiment. This approach can aid in
the design of technologically advanced
materials at a fraction of current
development costs.

Unfortunately, contributions arising
from theoretical investigations have
been limited. A major hurdle in
implementing the above strategy is
overcoming poor Y(N?) scaling (where
N is the number of atoms making up
the system) inherent in traditional ab
initio methods. $(V?) scaling arises
because of either the necessity of
solving an eigenvalue-eigenvector
problem or the need to calculate the
inverse of a matrix. This limitation
reduces both the types of properties
that can be realistically simulated and
the types of parameters that can be
reliably extracted for use in other large-
scale simulations. Solving this problem
requires the development of new ab
initio methods that offer significantly
improved scaling.

The introduction of massively
parallel processors (MPPs) in the
1980s has provided materials theorists
with the tools to begin development of
new ab initio methods for uncovering
the physical mechanisms responsible
for a material’s intrinsic properties. As
part of DOE’s High Performance
Communication Computation Program
(DOE-HPCCP) in materials science, we
have developed the first fully parallel,
local-density-approximation (LDA)-
based ab initio electronic structure
method that scales linearly [(N)] as
the number of atoms is increased. This
new method. referred to as the locally
self-consistent multiple scattering

Numbers Three and Four, 1997

(LSMS) method, is a real-space
multiple scattering. Green-function-
based method. For the first time. this
new technique using ab initio methods
makes possible an accurate simulation
of the properties of materials whose
behavior depends on the electronic
structure of systems comprising
hundreds to thousands of atoms.

The development of such a large-
scale application requires interdisci-
plinary work involving quantum
physics. materials science, applied
mathematics, and computer science.
This type of approach—formulated by
materials theorists at ORNL—has been
extremely successful, resulting in a
highly efficient algorithm that can be
used for investigations of materials
properties of systems that were
originally considered untenable because
of the number of particles necessary to
accurately perform the simulations.

At the heart of multiple scattering
theory is the calculation of the single-
site Green function. Determining the
single-site Green function requires
calculation of the scattering path
operator. The scattering path operator
describes the scattering of an electron
beginning at site / and ending at site j
and includes all possible scattering
paths. The total scattering path of an
electron consists of both a “single
scattering path,” by which an electron
scatters from a single site, as well as a
“multiple scattering path.,” by which an
electron scatters from multiple sites and
returns to a site multiple times after
being rescattered (see Fig. 3). For
condensed systems, multiple scattering
theory can be viewed as a succession of
scattering events with the added
advantage of expressing the scattering
properties of the entire system in terms
of the scattering properties of the
individual atoms. Using this type of
method along with standard approaches
employed in traditional electronic
structure methods leads to a 3(N%)
algorithm. Calculation of the scattering

path operator requires the inverse of a
matrix whose size is proportional to the
number of atoms, N, making up the
system and hence 3(NV?) scaling.

On the other hand, by making use
of MPP machines and formulating this
approach in real space with an approxi-
mation to the calculation of the scatter-
ing path operator leads to a H{(N)
method. In this new real-space approach.
every atom must calculate its own
scattering path operator and single-site
Green function. Formally, to calculate
the scattering path operator for site
requires inclusion of all scattering
events with all the other sites, leading
to the inversion of a matrix whose size
is proportional to N. However,
truncating the number of atoms in the
calculation of the scattering path
operator to m reduces the size of the
matrix to be inverted. Because each
atom must perform this inversion, which
scales as O(m?). the total scaling for the
entire N atom system is O(m’N). Now
the B(N) scaling can be realized by
noting that once m is determined, adding
more atoms outside of the m atom
cluster does not affect the calculation
of the scattering path operator. In other
words, once m is fixed. the algorithm
naturally scales linearly as N is
increased because every atom must
perform the matrix inversion. whose
size is the same. Therefore, each atom
requires the same amount of time to
perform this operation (see Fig. 4).

71

operator. A key feature of this method
is that only a small portion of the
inverse is needed. Using direct methods
such as lower upper (LU) triangular-
based methods to obtain this part of the
inverse still results in a 8(m?). So
instead, an iterative method known as
the quasi-minimal residual method
(QMR) was employed. This method
can be used for both symmetric and
nonsymmetric problems, and equally
important, it is extremely efficient in its
use of computer memory. Iterative
methods typically work well for sparse
matrices (matrices containing lots of
zeros) but not so well on dense matrices
(matrices containing very few zeros).
Normally, this is true because the full
inverse is usually being calculated.
However, because we are interested
only in a small portion of the inverse,
an iterative approach might just work.
and indeed it works extremely well.
There are certain situations where it is
known not to work as well as a direct
method. Therefore, the final algorithm
is a hybrid one that switches between
the QMR and a direct method,
providing maximum computational
efficiency.

Recently, materials theorists at
ORNL have formulated a new version
of the LSMS method. This new
approach results in a sparse scattering
path matrix. Again, the applied
mathematicians are working with the
application scientists on providing a
direct sparse solver. This solver takes
advantage of the sparsity pattern to
develop a computationally fast
algorithm that uses significantly less
computer memory than the previous
version of the LSMS computer code.

Accurately simulating particular
materials properties such as magnetic

Numbers Three and Four, 1997

interactions may require more
computational resources than can be
provided by a single large MPP
machine. requiring instead several
large machines that are networked
together. These machines can consist of
several different architectures and can
reside on different networks. This type
of computing is referred to as
heterogeneous computing. Efficient use
of these resources requires fault
tolerance. Fault tolerance provides the
user with the ability to restart an
application after a machine failure,
provided either that the remaining
computational resources can supply the
necessary capabilities or that additional
computational resources become
available to run the application.

Currently, the ORNL team is
involved in a networking project with
DOE’s Sandia National Laboratories
(SNL) to link together the two largest
computers in the world to solve an
important scientific problem. The two
machines that are networked together
are the 1024-node Intel Paragon XP/S
150 at ORNL'’s Center for Compu-
tational Sciences and the 1800-node
Intel Paragon at SNL. The LSMS
computer code is being used for this
project to study the magnetic structure
of technologically important magnetic
alloys. This project requires a strong
collaboration with computer scientists.
A key objective is to demonstrate the
effectiveness of linking together large-
scale MPP machines to solve important
scientific and technological problems.
The major obstacle to overcome is the
time it takes to communicate infor-
mation between machines.

The parallel virtual machine (PVM)
software library developed in ORNL’s
Computer Science and Mathematics
Division is used to handle the com-
munication between the machines.
PVM supports heterogeneous com-
puting and dynamic configuration,
permitting a user to add or delete
computational resources dynamically

during a PVM session. Also, PVM
takes advantage of high-performance
network interfaces such as the
asynchronous transmission mode
(ATM), which currently provides the
lowest latency and highest bandwidths
and, thereby, the maximum message-
passing performance.

ORNL computer scientists, led by
Al Geist, are also developing a parallel
application development system called
CUMULVS (see Kohl's article “High-
Performance Computing: Innovative
Assistant to Science” starting on p. 54).
CUMULVS supports fault tolerance.
interactive visualization, and
computational steering so that
parameters of a simulation can be
viewed and changed by participants
during the simulation to “‘steer” it
toward a desired outcome. Because it is
based on PVM. it is heterogeneous and
supports the use of high-speed network
interfaces. CUMULVS supports fault
tolerance through user-directed
checkpointing (saving) of data and
heterogeneous task migration. That is,
the user can specify the essential data
that must be saved to restart the
application. CUMULVS writes these
data out on each machine so that all
machines have a coherent view of the
data. CUMULVS can restart the
application either on the remaining
computational resources or by
dynamically adding new computational
resources via PVM and using the
checkpointed data as the input. The
interactive visualization feature
supports multiple viewers connected to
a running application. In this way,
scientists collaborating on the same
problem can view the data at the same
time on their own machines at their
own respective institutions.

We are currently incorporating
CUMULYVS into the LSMS code
because performing some of our
scientific investigations requires a large
number of computer resources
obtainable only by linking together

73

atomic site with its surrounding neigh-
bors. If a random disordered alloy is
truly random, then there is no correla-
tion between a site and its neighbors: in
the case of the nickel-copper alloy, the
nickel site is not affected by whether its
neighboring atoms are nickel or copper.
In many alloys, short-range order is
extremely important and must be
accounted for in the model if one hopes
to calculate a material’s properties
accurately. LSMS incorporates short-
range order in the construction of the
system by using short-range order
parameters, for example, to construct

a crystal lattice with atomic sites
occupied by atoms with appropriate
neighboring atoms. Traditional band
structure methods either cannot or can
only approximately treat these types of
effects.

Magnetic materials represent a
multibillion-dollar industry. A funda-
mental understanding of magnetism in
alloys has the potential to influence the
design of magnetic materials for appli-
cations ranging from power generation
to data storage. Magnetism has a
profound effect on many alloy proper-
ties such as phase stability. thermal
expansion, and electrical conductivity.

Magnetism is a consequence of
electron spin. In metals the same
electrons that give rise to cohesion
(the energy that holds the crystal
together) can, if they are reasonably
well localized about atomic sites (e.g..
d-electrons in cobalt, nickel, and iron),
also give rise to magnetism. Magnetism
occurs when it is energetically favor-
able on the atomic sites to have an
excess of electrons of one spin: this
spin imbalance gives rise to magnetic
moments associated with individual
atoms. In a ferromagnet the local
magnetic moments point in the same
direction (collinear parallel), resulting
in a macroscopic magnetic moment
(there are more electrons with spins
that point parallel to the spin axis of
quantization than electrons whose spins

Numbers Three and Four, 1997

point antiparallel); in an antiferromag-
net, an equal number of moments point
up and down (collinear antiparallel) in
an ordered arrangement, resulting in no
net macroscopic magnetic moment.

In our first investigation, we have
been studying the nature and effect of
magnetic inhomogeneities in nickel-
copper (Ni-Cu) alloys. This investiga-
tion uses the standard approach of
assuming that the electron spin points
either parallel or antiparallel to the spin
axis of quantization (we assume that
the z-axis is the spin axis of quanti-
zation in spin space). The second
investigation involves the use of a new
theory concerning noncollinear
magnetism. In noncollinear magnetism
the electron spin in the global frame of
reference (the laboratory frame) is not
restricted to any direction. but in its
local frame of reference (on the atom),
it points along the traditional spin axis
of quantization (z-axis). As will be
seen. this extra degree of freedom
allows for a very rich magnetic
structure that has not previously been
simulated using an ab initio approach.

Our second investigation is applied
to the disordered nickel-iron (Fe) Invar
alloy, Ni.35Fe.65. Invar alloys are
interesting for both scientific and
technological reasons. In 1920 the
Nobel Prize in physics was awarded to
the Swiss-born French scientist Charles
E. Guillaume for discovering this
unique magnetic alloy. Invar alloys
exhibit a negligible coefficient of
thermal expansion (hence INVAR-
iable). called the Invar etfect. These
alloys are used in many industries that
need a material that does not expand in
a particular temperature range. Such a
material is needed for shadow masks
for televisions and computer monitors,
the surrounding tubing for fiberoptic
cables, and high-precision laboratory
equipment.

The purpose of our investigation of
the Ni.80Cu.20 alloy is to uncover the

nature of the magnetic correlations
found in neutron-scattering experi-
ments performed more than two
decades ago by Joe Cable and
colleagues at ORNL’s High Flux
Isotope Reactor. The onset of
magnetism and the nature of the
ferromagnetic state when nickel is
alloyed with nonmagnetic copper to
form a weakly ferromagnetic
disordered Ni-Cu alloy have been
matters of scientific interest. The
results of the LSMS calculation for a
ferromagnetic disordered Ni.80Cu.20
alloy show that the local magnetic
moments associated with individual
sites are inhomogeneously distributed.
In the LSMS calculation the random
alloy is modeled by randomly
occupying the sites of the 256-atom
unit cell by atoms of nickel and copper
(shown as large blue spheres and small
red spheres, respectively, in Fig. 6). In
the illustration, the arrows emanating
from the nickel sites represent the
magnitudes of the calculated local
magnetic moments. (The magnetic
moments associated with copper sites,
which are antiparallel to the nickel
moments, are too small to be seen.)
The magnitudes of the nickel moments
are cncoded both in the length and in
the color of the arrows. The local
nickel-site magnetic moment varies
from a minimum of approximately
0.29 Bohr magnetons (blue arrows) to
a maximum of approximately 0.6 Bohr
magnetons (red arrows). Interestingly.
the magnetic moment on a nickel site
correlates with the total magnetic
moment on the nearest-neighbor shell
of atoms surrounding it: large red
arrows tend to be surrounded by other
reddish arrows, while small blue arrows
are surrounded by either copper sites
having no moment or other blue
arrows. So far, our calculations show
excellent agreement with the measured
neutron-scattering cross sections and
also provide an atom-by-atom picture
of magnetism (see Fig. 7). From this it

75

single grain breaks up into smaller
“grains” of different orientations.
Hence, formation of texture or
preferred orientations during the
deformation of a polycrystalline
material depends not only on the
orientations to which the grains rotate,
but also on the orientation spread
within each grain as different parts of
the grain rotate to different
orientations, as described above.
Because the deformation of the grains
is heterogeneous, the stored energy of
deformation is also heterogeneous at
the microstructural level. Both the
heterogeneity in the stored energy of
deformation and the orientation spread
in the deformed microstructure are
important variables that determine the
further evolution of texture during
thermal processing such as annealing.

The microstructural events that
occur during annealing of a deformed
microstructure lead to a reduction in
the stored energy of deformation by
decreasing the dislocation density in
the material. The two competing events
that occur are recovery and recrystal-
lization. Recovery is the process by
which the stored energy of the material
decreases continuously throughout the
microstructure by the rearrangement of
the dislocations into certain low-energy
configurations. On the other hand,
during recrystallization, there is a
discontinuous change in the dislocation
density because of the sweeping of the
microstructure by certain surfaces that
separate regions of high dislocation
density and extremely low dislocation
density. The resulting grain structure
and texture depend on the orientation
and the spatial distribution of the
recrystallized nuclei that provide these

Numbers Three and Four, 1997

zation of Microstructure-Property .

surfaces. The relationship between the
deformed microstructure and
nucleatior aring recrystallization is a
highly del.aied subject, and there is
significant interest among researchers
from both a fundamental and a
technological viewpoint. Although
several models have been proposed for
the formation of nuclei during
recrystallization, the extent to which
these models apply to a real
microstructure has not been quantified
because of the lack of quantitative
information on the deformed micro-
structure. The effect of simultaneous
recovery during recrystallization is to
diminish the driving force for the
migration of the high-energy surfaces
between recrystallized and deformed
regions, with the result that the
interface velocity decreases
continuously and may even vanish
before the recrystallization is complete.

Research at ORNL presented here
shows how the use of massively
parallel computing makes it possible to
quantify the complex metallurgical
phenomena that occur in aluminum
during thermomechanical processing.
For the first time, it is possible to
model the deformation of a three-
dimensional grain structure and
quantitatively predict the development
of not only the bulk texture but also the
orientation gradients that exist in the
deformed microstructure. In addition,
the simulations also predict the
heterogeneous distribution of the
stored energy of deformation from
grain to grain, as well as the
intragranular variation of stored energy
between sites at the interior of the
grains and those sites in the vicinity of
grain boundaries. The deformation
simulation results have been mapped to
a three-dimensional grid of regularly
spaced points and used to predict the
nucleation and growth of recrystallized
grains, as well as the simultaneous
recovery that occurs during subsequent
thermal processing.

ionship

The simulations for predicting
microstructural changes during
thermomechanical processing of metals
address two processes—deformation
and recrystallization. Simulations of
the plastic deformation of the material
(aluminum, in this case) require
computing the motion of the workpiece
under applied boundary conditions.
Balance laws for conservation of
momentum, mass, and energy form the
basis for solving the resulting initial-
boundary value problem. In addition to
the balance laws, it is necessary to
prescribe the constitutive behavior of
the material, which relates the applied
stress to the rate of deformation and the
microstructural state. The plastic
deformation is modeled in incremental
fashion: the displacement or velocity
of the workpiece is determined keeping
the material state fixed, and then the
state is updated before moving to the
next increment.

As discussed earlier, the
deformation of the metal is assumed to
occur by the movement of dislocations
along specific directions in specific
planes. The rate of shear on these
planes is related to the shear stress
through a constitutive relation,
typically a power law. The rate of
deformation of the _ nis given by a
linear combination of the shear rates on
all the slip systems, while the shear
stress on the slip plane is the projection
of the stress applied to the grain. A
constitutive law between the rate of
deformation and the stress tensors for
the grain can be derived by eliminating
the slip system shear rates from the
above-mentioned relations. This
constitutive law is nonlinear in the
stress and requires an iterative method
to compute the stress for a given rate
of deformation.

The governing laws lead to
differential equations that must be
integrated to obtain the motion or

111

deformation of the workpiece. The
complex nature of the problems makes
it necessary to use numerical methods
for solving them. and the finite element
method provides a suitable framework
for this purpose. The domain of
interest is discretized into several
elements, and the balance laws are
satisfied in an average sense over all
the elements. The approach using
finite elements for computing the
motion of the workpiece consists of
two main parts. The first task involves
computing the stiffness for each
element in the discretization, which
represents a measure of the material
response in that element. A stiffness
matrix is set up based on the current
material state by integrating the
equations associated with the element.
These stiffness matrices are then
assembled in the second step to
compute the discretized velocity or
displacement field of the workpiece.
The complexity of the two steps
depends on the nature of the
constitutive response and the size of
the discretization.

The nature of the constitutive
model based on crystal plasticity
makes the stiffness computations
extremely time-consuming. For a given
rate of deformation with five
independent components, a system of
nonlinear equations must be solved to
get the stress components. However,
these computations can be carried out
independently for each element,
making them quite efficient on a
parallel computer. It is this feature of
the formulation which enables the
treatment of fairly large-sized
problems in a reasonable time frame.
Although the stiffness computations
scale fairly well with increasing
numbers of processors. the assembly
and solver routines are not so scalable.
These parts of the program require
communication between processors.
which is an overhead that increases
with the number of processors.

112

A finite element code capable of
simulating the deformation of metals
has been developed for the Intel
Paragon at ORNL using High-
Performance Fortran. A certain amount
of optimization was achieved by
making use of native NX message-
passing calls. The code has been used
to simulate the deformation of face-
centered cubic metals in plane strain
compression, and the resulting data on
the distributions of stored energy and
orientations have been used in
modeling the subsequent
recrystallization process.

The simulation of microstructural
evolution during annealing is carried
out using a Monte Carlo technique.
The stored energy of deformation and
the orientations of the elements in the
deformed mesh are first mapped to a
grid of regularly spaced points. As
described previously, microstructural
phenomena such as recovery, nucle-
ation, and growth of recrystallized
grains occur to varying degrees
depending on the local deformation
microstructure. In the Monte Carlo
technique. each site in the grid is
visited in a random fashion and each
event is imp nted on the basis of its
probability of occurrence. The
nucleation step is modeled by the
growth of subgrains at each Monte
Carlo site. In those sites where the
stored energy of deformation is high
and where there is also a monotonic
increase in the misorientation of the
subgrains during growth, the
probability of forming a recrystalli-
zation nucleus is high. The quantitative
description of the deformed
microstructure allows. for the first
time, the incorporation of a nucleation
model based on subgrain growth at the
mesoscopic scale which represents a
collection of statistically significant
number of grains. Hence, both the
spatial distribution and the orientations
of the nuclei can be obtained from first
principles. The movement of a

boundary separating ad rmed region
from the recrystallized region is driven
by the elimination of the stored energy
of deformation as the boundary
advances. However, the driving force is
constantly decreasing because of the
recovery process. Also, the
advancement of the boundary requires
additional energy needed to create the
new boundaries. The net energy change
resulting from these processes is
calculated, and the advancement of the
boundary is allowed only if the net
change in energy is negative.

Figure 1(a) shows the initial
microstructure and its finite element
discretization. The different colors in
Fig. 1(a) indicate different grains in the
microstructure with a specific
crystallographic orientation for each
grain. The deformed mesh after a 50%
reduction in height by plane strain
compression is shown in Fig. I(b). The
nonuniform deformation of the mesh is
seen clearly. Figure 1(c) shows the
deformed microstructure without the
mesh. A comparison of the grain
structures in Figs. 1(a) and 1(c) shows
that the grain deformation is also
accompanied by a reorientation, the
extent of which varies from grain to
grain. In addition to an overall
reorientation, there is also an
orientation spread within each grain,
which again varies from grain to grain.
It is this orientation spread which gives
rise to selective nucleation of
recrystallized grains during annealing
as discussed later. The deformation
energy stored in the microstructure
seen in Fig. 2(a) is shown in Fig. 2(b).
Observe that the magnitude of the
stored energy varies from grain to grain
as well as 1in the grains. The stored
energy is high at certain intragranular
locations where there is an abrupt
change in the grain orientation. These
regions correspond to transition bands

Oak Ridge National Laboratory REVIEW

merican automakers must

design more efficient, cleaner

burning cars than ever, and
quickly. The 1990 amendments to the
Clean Air Act require a large reduction
in pollutant emissions from U.S. cars
and trucks by 2000, and the Compre-
hensive National Energy Policy Act
of 1992 exerts pressure on vehicle
manufacturers to improve fuel
efficiency. At the same time, market
competition demands a faster turn-
around time than ever before for new
vehicle designs.

Fortunately, American vehicle
manufacturers are in a position to take
advantage of new lightweight materials
and better fuels, electronic controls,
and ignition systems; and they have
new tools to help them keep pace with
government and market demands. One
of these tools is computational engine
modeling, in which manufacturers test
new engine components on computers
before creating expensive prototypes.
Furthermore, the advent of massively
parallel computers, such as ORNL’s
Intel Paragon XP/S 150, has now made
it possible to solve car-crash and
engine combustion problems in a
reasonable time—in minutes and
hours, not days and months.

Internal combustion engines, which
power most vehicles, are extremely
complex energy systems. An internal
combustion engine burns fuel within a
group of cylinders containing movable
pistons; the gases formed in combus-
tion push the pistons, which ultimately
turn the car’s wheels. The operation of
these engines involves the coupled
phenomena of combustion, turbulent
fluid flow, turbulent flame propagation,
radiative heat transfer, ignition and

Numbers Three and Four, 1997

extinction, pollutant formation, and
wall heat transfer—and in diesel and
fuel injection engines, spray dynamics.
Those phenomena are characterized by
a number of different time and length
scales.

Because of the extreme computa-
tional demands. engine combustion
modeling has been identified as a
Grand Challenge problem (a complex,
difficult problem that cannot be solved
without the use of high-performance
supercomputers). The goal of the
modeling is to determine whether new
designs will improve fuel efficiency
and reduce emissions.

One of the most powerful multi-
dimensional engine simulation codes is
KIVA and its offshoots, KIVA-II and
KIVA-3, which were developed by
DOE’s Los Alamos National
Laboratory (LANL) originally for
CRAY computers. The success of
KIVA simulations has led to wide use
of the code in the past decade. and it
has been implemented on other plat-
forms by various institutions. At ORNL
we developed a scalable distributed-
memory parallel version of KIVA-3
that is proving to be very useful.

One typical KIVA simulation of just
one engine cycle takes about 30 hours
on mainframe supercomputers such as
the CRAY Y-MP system. A processing
time this long is not acceptable to the
engine industry. Many medium-sized
companies do not even have access to
such computers. They typically do all
of their engine development using
simplified, zero-dimensional tools on

PCs or workstations. It is hoped that
ORNL’s parallel implementation of
KIVA-3 on distributed-memory
parallel computers or a cluster of
workstations will reduce the time
required for these simulations. Such
parallelization would not only allow
modelers to introduce more variables
into their calculations to achieve higher
grid resolution, but also provide them a
scalability in performance and memory
that is important to tackle large-scale.
complex problems.

Involving a great deal of physics.
KIVA analyzes coupled fluid
dynamics, fuel spray dynamics,
combustion and pollutant formation
reactions, and heat transfer in an
engine cylinder. It allows engine
designers to see the effects of
alterations to an engine’s geometry
without actually building the engine.
The user can combine the results with
a computer graphics package to
visualize the combustion process. The
user can see how the fuel-air mixture
is initially ignited and how the flame
grows from the initial ignition point,
spreading throughout the combustion
chamber. Predictions of nitrogen oxide
levels or other hazardous emissions
can be obtained for optimum engine
conditions.

KIVA has been a subject of much
research and constant improvement
since its first release in 1985. Besides
the work by KIVA's original authors,
new submodels have been developed
by other groups such as the Engine
Research Center at the University of
Wisconsin at Madison. Efforts are also
under way at ORNL to add highly
accurate spark-ignition. radiation heat
transfer. and turbulence models.

117

that reacts with the oxygen in the NO_
molecule after combustion, producing
nitrogen and water.

Other solutions could be developed
by carefully studying the effect of input
parameters on the emission, and the
KIVA model might be useful in doing
that. It should be noted, however, that
there might be technological difficulties
in controlling some of the input
parameters, such as the spark energy.
A recent spark-control experiment at
ORNL’s Life Sciences Division (LSD)
has been a source of new interest in
using KIVA to study the effects of
input spark energy characteristics on
emissions (see Fig 1). Isidor Sauers and
his colleague David Paul have recently
been able to stabilize the spark
breakdown voltage dramatically.

We are all familiar with a spark
discharge. You’ve felt one jab your
hand after walking across a carpet. A
more dramatic example is a lightning
strike, which occurs when voltages
become so high that the air can no
longer sustain them so it starts to
conduct electricity. In an automobile
engine, a spark from the spark plug
causes the same effect in the air-fuel
mixture. The high voltage (up to
20,000 volts) from the ignition coil,
which is generated in a very short time
(on the order of millionths of a second),
causes the electrical breakdown of the
gas. The by-products of the breakdown
depend not only on the intrinsic gas
properties but also on random events
such as the location and concentration
of charged particles in the gas.

In an engine the energy from the
ignition coil is transferred to the air-
fuel mixture through a spark. How that
energy gets dissipated (e.g., current and
duration of the spark) in the air-fuel
mixture can significantly affect the
combustion process. Incomplete
combustion leads to undesirable by-
products such as paraffins, olefins,
aromatics, aldehydes, ketones,
carboxylic acids, acetylene, ethylene,

Numbers Three and Four, 1997

polycyclics, carbon monoxide,
hydrogen, nitrous oxides, sulfurous
oxides, lead oxides (from impurities),
various oxidants, and soot. To study the
evolution of by-products to assess the
accuracy of computational models, it is
important to control in a systematic
way the breakdown voltage and, hence,
the energy delivered by the ignition coil
to the gas.

Until now, it had not been possible
to study the breakdown characteristics
systematically because the randomness
of the breakdown process results in
breakdown voltage values that vary
widely from spark to spark. Thus,
determining the relationship between
the input energy characteristics and
output emissions has not been a topic
of research. A joint effort among
ORNL’s Center for Computational
Sciences (CCS), Engineering
Technology Division (ETD), and LSD
is under way for improving KIVA-3 to
probe this untapped field. This effort
involves a close marriage of plasma
physics and automotive engineering.
Developing a new, highly accurate
spark ignition model and validating it
through experiments are among our
primary goals. The experimental effort
targets research engines employing the
spark control mechanism developed
earlier at ORNL.

The collaboration involving ETD
(headed by Ron Graves), LSD (headed
by I. Sauers), and CCS (headed by the
author) is just one of the examples of
ORNL’s multidisciplinary efforts in
high-performance computing and high-
precision spark-plug and engine diag-
nostics. A collaboration with General
Motors and Cummins Engine on spark
ignition modeling is also under con-
sideration. As ORNL's focal point for
DOE’s high-performance computing
program, CCS offers industrial
researchers a mechanism through its
outreach component—Computational
Center for Industrial Innovation
(CCII)—for taking advantage of

ORNL’s modeling efforts on massively
parallel computers.

KIVA-3 is a package consisting of
the main code, a preprocessor, and a
postprocessor. The preprocessor uses a
block-structured mesh to discretize the
physical domain and generates an input
file for the main code. This input lists
the grid point locations and the connec-
tivity arrays that identify neighboring
grids in all six directions. Each block is
initially created independently using a
tensor-product grid, but they are all
patched together at the end with
connectivity arrays describing the
surrounding points for each mesh
point. Because of connectivity
information for each cell, the grid
points do not have to be stored in any
order in data arrays, making it possible
to sort out the active and nonactive
(ghost) cells and leading to shorter
vector lengths in the computational
loops.

The use of ghost cells, connectivity
arrays, and cell-face boundary
conditions in all directions creates a
general recipe for physics, numerics,
and boundary conditions that can be
applied to a part of the domain as well
as the whole domain, thereby providing
for a convenient block-wise domain
decomposition. In a block-wise
distributed implementation, the ghost
cells match the real cells of outer layers
residing on other adjacent processors.

Spatial dependencies in the code
extend only one layer in each direction
and the presence of ghost cells and
cell-face boundary arrays in the code is
important in storing the neighborhood
information that processors depend on.
No dependency seems to be created
through temporal differencing because
variables are computed on the basis of

119

projects. Funding for subsequent years
is expected to equal or exceed these
amounts. The collaboratory projects
are expected to involve geographically
separated personnel and facilities and
to address a problem of national
significance related to DOE’s missions
in energy resources and technology,
environmental science and technology,
and national security. Such studies will
include demonstrations similar to the
following ones performed in 1996 at
ORNL.

At a press conference in March
1997 in Washington. Martha Krebs,
director of DOE’s Office of Energy
Research, announced DOE 2000
support for the Materials Micro-
characterization Collaboratory (MMC)
pilot project. In the materials
collaboratory, ORNL researchers will
be working with researchers from
ANL, Lawrence Berkeley National
Laboratory, and the DOE-funded
microscopy center at the University of
lllinois at Urbana—Champaign.
Contributing partners in the research
will be the National Institute of
Standards and Technology (NIST) and
six manufacturers of microscopes and
control systems: Philips, JEOL,
Hitachi, R. J. Lee, Gaton, Inc., and
Emispec. This 3-year, $11-million
effort inclh © matching funds from
DOE Energy Research’s Basic Energy
Sciences, Division of Materials
Sciences and from DOE Energy
Efficiency’s Office of Transportation
Technologies, Office of Heavy Vehicle
Technologies, as well as in-kind
contributions from NIST and industry.

ORNL facilities and principal
investigators involved in the first year
of the collaboratory are electron
microscopes in ORNL’s SHaRE
program (Kathi Alexander) and at
HTML (Allard. Voekl. and Nolan), the
Neutron Residual Stress Facility at the
High Flux Isotope Reactor, or HFIR
(Wright and Cam Hubbard), and
ORNL-supported X-ray beam lines at

Numbers Three and Four, 1997

the Advanced Photon Source at ANL
and the National Synchrotron Light
Source at DOE’s Brookhaven National
Laboratory (Gene Ice). Additional
ORNL facilities will be included in
later years.

Thanks to DOE 2000 funding, four
ORNL electron microscopes will be
available to authorized outside users
through the Internet. They are the
Phillips CM 200F field emission
transmission electron microscope, the
Phillips XL30 scanning electron
microscope (both in Building 5500),
the Hitachi S-4500 scanning electron
microscope, and the Hitachi HF-2000
cold-field emission transmission
electron microscope (both in HTML).

The collaborators will try to make
these user facilities more user-friendly.
They will automate routine functions
as much as possible and provide an
easy, effective mouse-driven user
interface. They will also add features
Lo ensure data security and keep
unauthorized users off the system.

Collaborative research projects
among scientists at the participating
laboratories will concentrate on
critical problems involving surfaces
and interfaces, which are important in
controlling the behavior of advanced
materials. Specific microscope
research will focus on catalysts used to
control emissions from automobiles
and diesel trucks as well as interfaces
between substrates and the coatings
designed to protect them against
corrosion.

Ed Oliver, associate director for
Computing, Robotics, and Education
at ORNL, says, “Collaboratories
would make expensive facilities like
the electron microscopes in HTML
much more usable and much more
productive. Our massively parallel
computers run 24 hours a day. We
would like for the tools in the user
facilities to be that busy, too. That’s
why ORNL projects for remote
operation software development are

being supported by our Laboratory
Directed Research and Development
Fund. By making it possible for a
researcher far away to use some of
these tools remotely, we can greatly
enhance our user facilities’ practicality
and affordability and possibly have
them working around the clock, too.
It’s more bang for the buck.”

Larry Allard sits beside a
sophisticated and unusually powerful
electron microscope at HTML. The
microscope, one of the few such
instruments in the world, brings up on
a computer screen a clear digital
image of a sample of fullerene carbon
material, magnified 400,000 times.
Suddenly, the magnification and angle
of the sample in the microscope’s
electron beam change. However,
neither Allard nor anyone else in the
room is at the controls. A colleague,
Edgar Voelkl, is adjusting the
instrument from San Diego,
California—far away from the
Tennessee laboratory.

Three years ago, Voelkl wrote the
software to operate HTML's Hitachi
HF-2000 field-emission transmission
electron microscope from a computer
keyboard. The software also allows
automated processing of images of
magnified samples captured by charge-
coupled device (CCD) cameras instead
of film.

In 1995, a $200 commercial
software package from Farallon called
TimbuktuPRO became available. A
user who has TimbuktuPRO on his
computer can remotely control a
distant computer, such as the one
controlling a research instrument. This

125

and geographically dispersed decision
makers.

Researchers at ORNL are accepting
the challenge of addressing problems
of national importance such as disaster
management. The ultimate goal, much
like the scenario described, is to allow
geographically dispersed decision
makers to respond quickly in a
collaborative decision-making
environment. Disaster management is
only one example of the applicability
of current and proposed research that
combines software engineering,
computational science, and collab-
orative technologies.

To enable a collaborative decision-
making environment, many complex
issues must be investigated and
plausible solutions identified. In a
collaborative decision-making
environment, unlike traditional
approaches, information is extremely
varied and in a multitude of formats.
Software programs historically written
to solve a single problem without the
requirement to interoperate with other
software programs must be adapted to
work in concert with many other
software programs. Diverse end users
with very distinct educational back-
grounds and use of professional jargon
are required to work in an environment
of common understanding. The
information needed goes beyond data
on the status of the infrastructure; it
includes not only inventory, finance,
and accounting data but also detailed,
predictive, interactive “what-if”
calculations that involve large-scale
scientific computation, visualization,
and steering to answer near-term
questions of dramatic importance. For
example: Will the flash flood affect this
neighborhood? Will the plume cloud

Numbers Three and Four, 1997

move over this neighborhood, that
neighborhood, or away from all
population centers? Where will the
hurricane make landfall?

Collaborative computing is the
paradigm of choice for solving large,
complex scientific and managerial
problems. The use of collaborative
computing to establish a rapid, on-
demand interoperability of autonomous
legacy applications and tools within
new and evolving environments
requires researchers to go beyond
current software integration approaches.
New initiatives, such as DOE 2000
(see previous article in this issue),
establish an aggressive research agenda
to ““...fundamentally change the way
scientists work together and how they
address the major challenges of
scientific computation.” To accomplish
this change, DOE 2000 plans to
“develop and explore new computa-
tional tools and libraries that advance
the concept of ‘national collabora-
tories’ and Advanced Computational
Testing and Simulations (ACTS). The
vision of DOE 2000 is to accelerate the
ability of the DOE to accomplish its
mission through advanced computing
and collaboration technologies. DOE
2000 ushers in a new era of scientific
collaboration that transcends geo-
graphic, discipline, and organizational
boundaries.”

In collaborative computing, two or
more computer users work in concert
across time and space by using
interoperable software so they can
simultaneously solve a problem. ORNL
computer scientists have broken new
ground in collaborative computing,
spanning the scientific and admini-
strative computing spectrum. Each step
contributes to the foundation upon

e p

which real collaborative environments
are built.

In scientific computing, DOE 2000
efforts at ORNL include the Materials
Micro-Characterization Collaboratory
(MCC), CUMULVS, and the electronic
notebook projects. In the MCC project,
the goal is to join several centers of
excellence into a single on-line
interactive collaboratory in which
electron microscopes can be operated
remotely (for more details, see the
article in this issue starting on p. 122).
CUMULVS is designed to support
remote computational steering of
paralle] applications and includes
features such as interactive visuali-
zation and fault tolerance (for more
details, see the article in this issue
starting on p. 54). In distributed,
collaborative environments, projects
like ORNL’s electronic notebook
provide a mechanism for scientists to
record information such as the usage of
instruments and experimental results
(for more details, see the article in this
issue on p. 131).

Other ORNL information and
computer science efforts also
contribute to enabling collaborative
computing. In the Computer Science
and Mathematics Division (CSMD),
researchers are developing the
Collaborative Management
Environment (CME) and other
technologies such as Netsolve and data
mining techniques. Researchers in the
Center for Computational Sciences
(CCS) are also contributing to
advancements in data mining.

The led by Kimberly Barnes
and T. E. Potok (both of CSMD), is
a joint research project among Oak
Ridge, Ames, Lawrence Berkeley,
Los Alamos, and Fermi National
Laboratories to establish a robust
scalable, and secure virtual mana,.-
ment system for the DOE complex.
The focus is on comprehensive
integration of information within

133

OAK RIDGE NATIONAL LABORATORY REVIEW
P.0. Box 2008, Oak Ridge, Tennessee 3?8_31-6144

U.S. Postage
PAID
BULK RATE
Oak Ridge, Tenn.
Permit No. 3

Simulating the atmosphere

_ and ocean using coupl

general circulation models
requires world-class
computational resources.
Energy policy and the science
of climate change depend
increasingly on the reliability
of these models to predict the
effects of increased levels of
carbon dioxide and other
greenhouse gases. ORNL has
pioneered the use of massively
parallel computers for climate
modeling. A snapshot from a
simulation of the current
climate shows the amount of
moisture in the atmosphere. In
a warmer climate the circula-
tion is likely to carry more
moisture from the tropics info
the mid-latitudes, increasing
the iransfer of heat toward
the poles. Models are contin-
vally improving by comparing
results with observed data.
The precipitable water field
can be compared directly with
satellite measurements. See
discussion on p. 32.

POSTMASTER: DO NOT FORWARD: ADDRESS CORRECTION REQUESTED, RETURN POSTAGE GUARANTEED.

