
ORNL/TM-2016/43

AMPX-6: A Modular Code System for
Processing ENDF/B

D. Wiarda
M. E. Dunn
N. M. Greene
M. L. Williams
C. Celik
L. M. Petrie

April 2016

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

http://www.osti.gov/scitech/
http://www.ntis.gov/help/ordermethods.aspx
http://www.osti.gov/contact.html

ORNL/TM-2016/43

Reactor and Nuclear Systems Division

AMPX-6: A MODULAR CODE SYSTEM
FOR PROCESSING ENDF/B EVALUATIONS

D. Wiarda
M. E. Dunn
N. M. Green

M. L. Williams
C. Celik

L. M. Petrie

April 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

LIST OF FIGURES .. v
LIST OF TABLES .. vii
ABSTRACT .. 1
1. INTRODUCTION .. 1

1.1 HISTORY ... 1
2. OVERVIEW ... 3

2.1 WHAT ARE CROSS SECTIONS? .. 3
2.2 THE MG APPROACH ... 4

2.2.1 MG Structure ... 5
2.2.2 Weighting Spectrum Selection... 6
2.2.3 Point Cross Sections .. 7
2.2.4 Scattering Kinematics .. 9

2.3 CE LIBRARIES .. 10
2.4 THE MODULAR CONCEPT .. 10

2.4.1 Execution Sequences ... 11
3. PROCESSING ENDF DATA .. 14

3.1 CREATING AN MG LIBRARY .. 16
3.2 CREATING A CE LIBRARY .. 18

4. USING EXSITE ... 21
4.1 CREATE AN XML LISTING .. 21
4.2 USING TEMPLATES .. 24
4.3 EDIT INPUT FILES ... 28

5. DATA STRUCTURES ... 37
5.1 POINT-WISE DATA .. 37

5.1.1 1-D data .. 37
5.1.2 Kinematic data ... 37
5.1.3 Mesh generation ... 38
5.1.4 Interpolation ... 39
5.1.5 Comparison .. 41
5.1.6 Conversion for kinematic data ... 42

5.2 GROUP-AVERAGED DATA .. 43
5.3 PROBABILITY DATA .. 44

6. NOTES ON SOME OF THE MODULES ... 45
6.1 POLIDENT ... 45
6.2 TGEL .. 47
6.3 Y12 .. 47

6.3.1 Processing of ENDF Tapes .. 47
6.4 JERGENS ... 52
6.5 PURM AND PURM_UP .. 52
6.6 PRUDE ... 53
6.7 X10 .. 53
6.8 FABULOUS ... 53
6.9 LAMBDA ... 58
6.10 SIMONIZE ... 59
6.11 JAMAICAN .. 59
6.12 PLATINUM .. 60
6.13 PUFF-IV ... 61

6.13.1 Point-wise covariance for cross section data ... 61
6.13.2 Resolved resonance covariance matrix .. 63

iv

6.13.3 Unresolved resonance covariance matrix .. 64
6.13.4 Exit energy covariance matrix ... 64

7. MISCELLANEOUS USEFUL INFORMATION .. 66
7.1 PROCESSING OF ENDF TAPES ... 66
7.2 FILE FORMATS USED IN AMPX ... 66

7.2.1 Tab1 formats .. 66
7.2.2 Kinematics file ... 67
7.2.3 MASTER LIBRARY AND WORKING LIBRARY FORMATS 69
7.2.4 CE library format ... 81

7.3 REACTION TYPE IDENTIFIERS .. 97
7.3.1 Multiplicity matrices .. 98
7.3.2 Additional Reaction values used in AMPX ... 98

7.4 MISCELLEANEOUS USEFUL INPUT FILES .. 99
7.4.1 Print 1-D cross section data from AMPX master or working library 99
7.4.2 Convert (x,y) data into a weighting function file ... 100

7.5 INTEGRATION ROUTINES IN AMPX6 ... 101
8. INPUT FILE GENERATION .. 102

8.1 AUTOMATIC INPUT FILE GENERATION .. 102
8.1.1 ENDF listing .. 102
8.1.2 Templates ... 107

8.2 EXSITE FILES .. 110
8.3 GENERATING MODULE INPUT AND PDF INPUT ... 123

9. INSTALLATION ... 124
9.1 RECOMMENDED INSTALLATION PROCEDURE ... 124
9.2 MAC OSX .. 125

10. FIDO INPUT .. 127
10.1 INTRODUCTION .. 127
10.2 FIXED-FIELD INPUT ... 127
10.3 FREE-FIELD INPUT ... 129
10.4 USER-FIELD INPUT ... 130
10.5 CHARACTER INPUT .. 130

11. REFERENCES ... 131
APPENDIX A. APMX INPUT INSTRUCTIONS ... A-1

v

LIST OF FIGURES

Fig. 1. AMPX sequence for producing neutron MG library for one isotope. ... 16
Fig. 2. AMPX sequence for producing neutron CE libraries for one isotope. .. 18
Fig. 3. Start reading abbreviated ENDF tapes. ... 22
Fig. 4. Select the ENDF tapes from which to create the listing. ... 22
Fig. 5. Progress bar to indicate that ENDF tapes are being parsed. .. 23
Fig. 6. Select the output for the ENDF listing. ... 24
Fig. 7. Drag a template into an template file. .. 25
Fig. 8. Add parameters to create the input files. ... 26
Fig. 9. Expand the templates into input files. .. 27
Fig. 10. Add nuclide info for POLIDENT. ... 29
Fig. 11. Additional dialog for repeating entries. ... 30
Fig. 12. Edit repeating entry. .. 31
Fig. 13. Drag to edit input instructions. .. 32
Fig. 14. Run AMPX input file in ExSite. .. 33
Fig. 15. Start wizard to add more than one task. ... 34
Fig. 16. Select the directory in which to run AMPX. ... 35
Fig. 17. Manage queue of submitted jobs. .. 36
Fig. 18. Difference between using unit-based over the full range or using unit-based between low

exit energy and incident energy and incident energy and high incident energy. 41

vii

LIST OF TABLES

Table 1. Record type 3 (cross section directory record) ... 71
Table 2. Continuous-energy cross section file organization ... 81
Table 3. AMPX/SCALE header information block format .. 83
Table 4. Header block format ... 84
Table 5. ν data block format .. 85
Table 6. Reaction identifier (MT) data block format .. 86
Table 7. Unionized energy grid data block format ... 86
Table 8. CE microscopic cross section data block format .. 87
Table 9. Energy-dependent collision probability data block format ... 89
Table 10. Header records in zero-temperature file only ... 90
Table 11. Forward kinematics data structure for a single reaction ... 92
Table 12. Probability table structure for unresolved region .. 96
Table 13. Total and fractional multiplicity MT values ... 98
Table 14. Reaction numbers used in the AMPX code system .. 99
Table 15. Field names automatically extracted from the ENDF evaluation ... 102
Table 16. Thermal material numbers recognized (See ENDF manual for detail) 106
Table 17. Additional substitution values that can be used in templates .. 108
Table 18. Attributes available for input parameters .. 111
Table 19. Child elements available for all input descriptions. .. 113
Table 20. Attributes available for exsite_group element .. 115

1

ABSTRACT

AMPX is a modular system of computer programs used for nuclear analysis with a primary emphasis on
tasks associated with the production and use of multigroup (MG), continuous energy (CE) cross sections,
depletion/decay libraries, and covariance data. AMPX accepts basic cross-section data from cross-section
evaluations in the international Evaluated Nuclear Data File (ENDF/B) Format. AMPX can be used to
generate a variety of MG libraries that can be used with modern transport codes to perform nuclear
analyses. CE or point cross section libraries can be produced for use in Monte Carlo codes and other
applications. Also, AMPX provides cross-section uncertainty or covariance data for use with
sensitivity/uncertainty analysis tools. Furthermore, AMPX can be used to process ENDF/B evaluations to
produce depletion and decay libraries needed by depletion codes such as ORIGEN. In addition, AMPX
has an internal MG format that can be read by various AMPX modules and codes outside the system.
For example, the Standardized Computer Analyses for Licensing Evaluations (SCALE) system has the
capability to read AMPX formatted cross section libraries. This manual provides procedures for
producing nuclear data libraries needed by SCALE and other radiation transport packages.

1. INTRODUCTION

1.1 HISTORY

The AMPX system [1] has existed since the early 1970s and was developed at the Oak Ridge National
Laboratory (ORNL) under sponsorship of the Defense Nuclear Agency (DNA). The primary objective of
the early system was to produce coupled MG neutron-gamma-ray cross section libraries needed for deep
penetration shielding applications.

Prior to AMPX, the generation of coupled cross section libraries required the use of three independent
computer codes:

1. XLACS [2], which produces MG neutron cross section libraries,

2. MUG [3], which produces MG gamma-ray cross section libraries, and

3. POPOP4 [4], which produces coefficients needed to determine gamma-ray sources arising from
neutron reactions.

The libraries produced by these codes were written in a special format required either by the ANISN [5]
and DOT [6] discrete ordinates transport codes or the MORSE [7] MG Monte Carlo code. In the case of
XLACS, the library was written in a format that had to be used in a discrete ordinates code known as
XSDRN [8] before an ANISN-formatted library could be written. In order to develop the desired MG
library, the three classes of data were combined to produce a single coupled neutron-gamma-ray library.
The production of a coupled library was laborious and time consuming.

Many similar procedures in the 1960–1970 time period required the use of computer programs that were
just as inconvenient and difficult to use. As a result, several organizations developed a new approach for
code development known as modular programming. These systems were organized to make it easier to
execute sequences of computer programs. Notable among these systems is the DATATRAN [9] system
developed at Knolls Atomic Power Laboratory (KAPL), the ARC [10] system developed at Argonne
National Laboratory (ANL), and the JOSHUA [11] system developed at the Savannah River Site (SRS).

The AMPX system developed at ORNL borrowed heavily from the ideas and concepts of the early
modular cross section processing systems. AMPX is an acronym for Automation of MUG, POPOP4, and

2

XLACS. During the early 1970s, these three codes comprised the core capabilities needed to generate
coupled libraries, but these codes were augmented with a variety of other programs that perform
resonance self-shielding, convert library formats, combine collections of cross section data, etc.

The AMPX code system was initially released in 1973 and distributed at ORNL by the Radiation
Shielding Information Center (RSIC), the predecessor of the current Radiation Safety Information
Computation Center (RSICC). The AMPX code system was distributed by RSIC to many facilities in the
United States and throughout the world. Following the initial release, the AMPX code system did not
have dedicated funding in the years subsequent to the release. Consequently, further improvements to the
AMPX system were supported at a very low level by many projects that dictated the development of new
processing procedures.

The development of the Standardized Computer Analyses for Licensing Evaluations (SCALE)
system [12] for nuclear analyses was initiated at ORNL under the sponsorship of the Nuclear Regulatory
Commission (NRC) in 1973. Many SCALE analysis tools were taken from the AMPX system. Moreover,
these tools or codes have been continuously refined and supported over the years. In fact, tasks needed for
the SCALE system have indirectly provided a substantial fraction of the support for improvements to the
AMPX system over the years. Due to further enhancements of the cross section processing capabilities,
an upgraded AMPX code system was released by RSIC in 1978 as code package PSR-63/AMPX-II [13].

For the next fourteen years, AMPX-II was used to produce MG cross section libraries for nuclear
applications until the release of AMPX-77 [14] in 1992. The “77” indicates that all modules of the AMPX
system were developed under the FORTRAN-77 programming standard. The AMPX-77 development
was driven by cross section generation tasks associated with processing Version V of the Evaluated
Nuclear Data File (ENDF/B) [15]. In particular, AMPX-77 was used to generate the 238-group LAW
[16] library that has cross sections for more than 300 ENDF/B-V isotopes/nuclides.

The ENDF/B release in 1990 used a new collection of formats known as Version 6 [17] that differ from
the format used with the release of the ENDF/B-V library in 1978. The ENDF/B-6 Format has been used
with all ENDF/B libraries beginning with ENDF/B-VI and continuing through the latest ENDF/B library.
Because of a lack of dedicated funding between 1990 and 1996, AMPX had not kept pace with the newer
ENDF/B format after the release of the ENDF/B-V library. In an effort to update the AMPX code
system, the NRC task ORNL in 1996 to develop a new AMPX cross-section processing system with the
capability to process ENDF/B formats through Version 6.

In the past several years, dedicated funding from the US DOE Nuclear Criticality Safety Program (NCSP)
and subsequently the NRC enabled ORNL to modernize the AMPX cross-section system. One of the
initial objectives of the code modernization effort was to bring AMPX under a formal software quality
assurance plan (SQAP). To achieve this objective, ORNL made the decision to merge the AMPX
software repository (including software configuration control) and build system with SCALE. Merging
the AMPX and SCALE development infrastructure offers many advantages with the primary motivation
being software quality assurance. The merger also allows AMPX to use the same continuous integration
testing that SCALE now uses [18]. All SCALE development and testing is performed under the SCALE
QAP. Moreover, the SCALE QAP specifies the development infrastructure and testing harness that is
used to meet the software QA requirements. By merging the AMPX repository and build with SCALE,
all of the AMPX development and testing is now performed under the SCALE QA infrastructure. As a
result, AMPX development is performed under the SCALE QAP. Although AMPX and SCALE are now
developed under the same infrastructure, both code packages will remain separate code packages that can
be distributed together or as separate packages. As a result, the development infrastructure merger should
be transparent to the user, but the benefit is improved quality and overall efficiency of SCALE and
AMPX development.

3

In addition to the development infrastructure improvements with AMPX, efforts are in progress to
modernize the entire cross-section processing system. With the current release of AMPX, portions of the
AMPX code system have been converted to C++, taking advantage of modern memory management
capabilities and increased computing power. As AMPX capabilities are modernized, these new modern
code updates will be released with the AMPX package. Recent modernization efforts have focused on the
collision kinematics processing capabilities. Since AMPX has a much longer tradition for generating MG
libraries than CE libraries, some processing of the scattering kinematic data was geared more towards MG
processing. Previously, kinematic scattering data were processed for use in MG libraries and then
converted back for use in CE libraries. Some fidelity was lost in these conversions. The modernization
allowed for substantial upgrade of the processing for kinematic data. Since the generation of kinematic
data uses many low-level routines, many of these routines have also been updated to C++. This release of
the AMPX code package includes modernized collision kinematics processing capabilities. The
following section provides an overview of cross-section processing fundamentals along with an overview
of the current AMPX capabilities.

2. OVERVIEW

In this section, a qualitative discussion of cross sections is provided, along with various associated cross
section operations. In most cases, the discussion is limited to neutron cross sections while most
observations apply to other particles.

2.1 WHAT ARE CROSS SECTIONS?

Cross sections are parameters that characterize how particles interact with matter. CE or point cross
sections characterize a particle traveling at a particular speed in a particular direction. Upon interaction
with a target nucleus, the particle can change speed and/or direction. The total cross section quantifies the
probability that a neutron will interact with a target nucleus. The total cross section is the sum of the cross
sections that define the probability of having any one of several types of interactions. In the case of
neutrons, there may be a hundred or more possible reactions that can be categorized as either absorption
or scattering interactions.

If a particle is absorbed by a target nucleus, a new compound nucleus is formed that subsequently decays
by emitting an energetic particle(s) such as an (n,γ) reaction. In neutron transport codes, fission is
typically treated as an absorption reaction, and the neutron multiplicity data (i.e.) are used to determine
the number of secondary neutrons produced by the fission event. With regard to scattering, a particle may
interact with the nucleus without penetrating the nucleus. In this type of collision, the particle scatters in a
billiard-ball fashion with the nucleus, and the reaction is referred to as potential scattering. The remaining
types of scattering events are elastic and inelastic scattering. During an elastic scattering reaction, the
particle is absorbed by the nucleus and subsequently re-emitted, leaving the target nucleus in the ground
state. As a result, the kinetic energy is conserved for the elastic scattering reaction. For an inelastic
scattering reaction, the incident particle is absorbed by the nucleus, and a compound nucleus is formed.
The excited nucleus subsequently decays by emitting an energetic particle, thereby leaving the nucleus in
an excited state. Unlike the elastic collision, the kinetic energy of the inelastic scattering reaction is not
conserved.

A cross section by itself is not enough information to use in a particle transport calculation. The total
cross section and its components provide enough information to describe the possible interactions;
however, determining the energy and angle of secondary particles requires a knowledge of the reaction

4

kinematics, or the physics must be presented in a structured manner (e.g., tables of energy and angle
distributions of secondary particles) to determine the exiting energy and angle.

The AMPX code system can generate MG libraries, whose uses are described in the next section, as well
as CE libraries.

2.2 THE MG APPROACH

In the 1940s and most of the 1950s, nuclear analyses were performed without point cross section data
because the data simply did not exist. Due to the limited computing resources of the time period, transport
calculations that use CE cross sections were not feasible.

Indeed, many calculations were very simple and would not be described as either point or MG
calculations. For these calculations, the cross sections were assigned a single value that was selected as
the value for the most important energy range for a specific process of a particular isotope. As an example
for a thermal reactor calculation, the fission cross section for 235U would be the average value in the
thermal region while the fission cross section for 238U would be set to zero.

In the early 1950s, the group diffusion method was developed. This method combines slowing-down
theory for energy degradation with diffusion theory for the spatial variation of the neutron flux [19].
In the treatment, the full energy range is divided into a number of energy intervals (or groups), and the
neutron is assumed to suffer the average number of elastic scattering collisions required to slow down
through an energy group prior to emerging in the next energy group. The number of energy groups and
associated group constants that were used in this early method is unknown; however, approximate
methods were most likely used to obtain the group constants.

The simplest of the group diffusion methods is the one-group diffusion theory method that served as the
basis for many early nuclear analyses. Two-group diffusion theory is well documented and may represent
the limit of the number of energy groups that could be handled without computer resources.

The MG approach became prominent in the 1950s, and many MG cross section libraries were introduced,
including the 6- and 16-group Hansen-Roach libraries [20,21], the 26-group Russian Bondarenko library
[22], the 30-group THERMOS library [23], and the 99-group GAM-II library [24]. Interestingly, the
growth of the MG methods paralleled the advancements in computer computational capabilities. The
development of the numerical computational methods in parallel with advances in computer capabilities
has made the hand calculation methods more feasible.

Four components are required to create a MG cross section library:

point cross section data,

MG energy structure,

flux or weighting spectrum, and

analytic description or tabular description of reaction kinematics.

The subsequent sections discuss the four components needed to generate a MG cross section library.

5

2.2.1 MG Structure

The inherent assumption of the MG approach is that an energy quadrature can be defined so that the cross
section variation in an energy group can be adequately represented by a single average value. Years of
calculation experience have revealed that the inherent assumption of the MG approach is valid for many
conditions; however, there are some configurations where a particular MG structure does not yield
acceptable results. In practice, MG structures are typically classified as either a fine or broad group
structure. A fine group structure has a sufficient number of energy groups that can be used to analyze a
wide variety of problems. Conversely, a broad group structure has a sufficient number of groups that can
be used for a specific class of problems as determined by the developer of the cross section library.

The choice of a group structure and associated weighting spectrum are strongly correlated. In an ideal
situation, the importance of the weighting spectrum should be minimized with a larger number of groups
because the cross section variation should decrease as the energy band becomes smaller. However,
experience with some isotopes has revealed that an ideal group structure does not exist because of the
rapid cross section variation as a function of energy.

Fine group structures may require between 100 and 30,000 energy bins, and there are several fine group
libraries with 200 to 500 energy groups. These fine group libraries can be used to treat a wide variety of
problems; however, some specific energy regions and isotopes/nuclides demand additional treatments for
extreme cross section variations as a function of energy.

For many applications, a broad group library is directly applicable and suitable for production analyses.
Furthermore, some two-dimensional (2-D) or three-dimensional (3-D) transport calculations with a fine
group library can be prohibitive even with current computational capabilities, and a broad group library
must be used. Broad group libraries are generated or collapsed from a fine group library and are generally
applicable to a limited class of problems. The techniques used to weight the fine group data and
subsequently produce a broad group library require a weighting spectrum similar to the spectra of the
intended class of problems (e.g., a light-water reactor spectrum).

As noted above, there is not a single fine group energy structure that can be used for all problems that
eliminates the need for a weighting spectrum. The selection of a fine group structure is based on the
following criteria:

a. thresholds of important reactions for specific isotopes/nuclides in the group structure (e.g., if
resonance integrals are frequently calculated, the 0.625 eV boundary should be included to
account for the cadmium cutoff value),

b. maintaining the capability to reproduce a previously defined broad group library from the new
general purpose library (i.e., retrofitting capability),

c. experience with previous cross section evaluations,

d. treatment of important resonances (e.g., isolate the 6.67 eV 238U resonance into one or more
energy groups) is required.

e. treatment of dips or windows in the cross section data (For shielding applications, the low cross
section values can provide an energy range for neutron streaming; there is a cross section dip
below the 25 keV resonance for 56Fe.), and

6

f. treatment of resonances at low energies. (For example, 239Pu and 241Pu have resonances in the
thermal energy region, and most resonance treatments assume free-atom elastic scattering to
calculate the slowing-down effects. Moreover, these resonances are in an energy region where the
proper slowing-down kinematics should be used. Therefore, enough groups should be selected to
explicitly calculate the effects of the low energy resonances.)

2.2.2 Weighting Spectrum Selection

Selection of an appropriate weighting spectrum is crucial for collapsing point cross section values to a
MG cross section library. MG parameters are characterized by three classes of information:

1. group-averaged parameters such as the average value of a fission or elastic scattering cross section for
a specific energy group;

2. group-to-group scattering parameters that define the particle scattering between energy groups (These
MG parameters describe the scattering transfer as a function of scattering angle. Regarding the angle
dependence, the parameters are provided in a matrix form so that the individual terms are the
coefficients of a Legendre fit to the scattering terms. As an important note, if a cross section value is
flat within an energy group, the scattering distribution and associated terms of the scattering matrix
depend on the weighting spectrum. If the weighting spectrum is higher at the low end (in energy) of
an energy group, the out-of-group transfer is emphasized. Conversely, if the weighting spectrum is
higher at the upper end (in energy) of the energy group, the within-group transfer is emphasized.);
and

3. additional MG parameters such as the fraction of fission neutrons born in energy group g, χg, or the
average number of fission neutrons produced in energy group g, .

Each of the above parameters is directly affected by the selection of the weighting spectrum, and the use
of a fine group structure can reduce the effects of the weighting spectrum on the individual parameters.

Although the selection of a weighting spectrum for generating MG cross sections is important, there is an
additional cross section processing consideration that may reduce the potential problems associated with
the generation of a MG library using an inapplicable weighting spectrum. In the resonance region, the
cross section resonances significantly affect the spectrum that a nuclide will “see.” In particular, the
resonance of a nuclide will “shield” a nuclide from “seeing” a 1/E flux that would normally be present in
the absence of the resonance in the slowing-down region. As a result, there are a variety of procedures
that can be used to account for the effects associated with the resonances in the slowing-down region. The
treatment of the shielding effects in the resonance region is referred to as “resonance self-shielding.”

Most fine-group libraries (at least in AMPX) are generated based on a weighting spectrum that is
constructed by splicing 4 simple spectra together. At low energies (arbitrarily chosen to be below
0.125 eV), the weighting function is a Maxwellian spectrum which has a flux shape that assumes the
neutron scatters into a region with a free gas scatterer that has no absorption. The Maxwellian flux
spectrum has the form:

Error!
Bookmark not
defined.1

where

7

E = energy,

k = Boltzmann constant,

T = temperature in Kelvin.

In the slowing down range, 0.125 < E < Ecut, the weighting spectrum is assumed to be . The
cutoff energy Ecut for the slowing down range must be selected and is typically 83 keV by default in the
AMPX modules. In the region, Ecut < E < 107 eV, where fission neutrons are born, the following fission
spectrum is used:

 Error!
Bookmark not
defined.2

where

θ = temperature of the fission spectrum (e.g., 1.2 × 106 eV).

For energies above 107 eV, the particles are considered to be in another slowing down region; hence, the
spectrum is assumed to have a l/E shape. For fusion applications, the user may want to include a “fusion
peak” that is tied to the 1/E spectrum in the 20 MeV range.

In addition, AMPX allows nuclide and temperature dependent flux spectra.

2.2.3 Point Cross Sections

The ENDF/B evaluations provide CE representations for many cross sections; however, there are energy
regions where the point cross section representation is incomplete and may be zero. For example, the
tabulated CE data for 235U are zero from 10-5 eV through 2.5 × 104 eV. There is a logical explanation for
the data deficiency. In particular, the example data range for 235U spans energy ranges known as the
resolved and unresolved resonance regions, and the ENDF/B evaluation does not provide CE cross
section data in the resonance region. However, the ENDF/B evaluation provides detailed information
about the resonance structure in the resonance region, and a processing code must be able to reconstruct
the CE cross section representation from the parameters in the resonance region.

2.2.3.1 Resolved Resonance Region

In the resolved resonance region, the evaluation also specifies a mathematical set of formulae that are to
be used in conjunction with the resonance parameters to calculate the cross section values as a function of
energy. Six different resolved resonance formalisms are available in the Version 6 formats of the ENDF/B
system; however, only five formalisms are currently in use:

1. the single level Breit-Wigner (SLBW) representation,
2. the multilevel Breit-Wigner (MLBW) representation,
3. the Adler-Adler (AA) representation, and
4. the Reich-Moore (RM) representation.
5. the full Reich-Moore (RM) representation.

8

These formalisms are mentioned in order of increasing complexity and are documented in the ENDF/B
procedures manual [Error! Bookmark not defined.], and are discussed in detail in the POLIDENT user
guide [25].

In the resolved resonance region, neutron resonances are described with parameters that define specific
characteristics of each resonance (e.g., the resonance energy, size, spin, angular momentum, etc.). Some
evaluations may specify more than a thousand resonances. Unfortunately, the ENDF/B formats do not
provide an energy mesh or guidance for defining an energy mesh for resonance reconstruction. Due to the
lack of specific guidance, many mesh generation schemes have been employed in a variety of codes. The
various mesh generation schemes range from very crude approaches that define equal energy bins around
the peaks of a resonance to more efficient and accurate expressions that characterize the resonance shape.
The more sophisticated methods define a mesh by maintaining a specific ratio of successive cross section
values as a fixed constant (e.g., 0.95). (See the discussion of such a technique in the POLIDENT manual
[25]). Still, other approaches use adaptive methods that ensure the energy mesh is refined to a point where
cross sections can be interpolated within the mesh panels to a user specified tolerance (e.g., POLIDENT
module). Techniques to determine the energy mesh within some specified tolerance are expensive and
generally require more CPU time than the actual cross section calculation. The increase in CPU time is to
be expected since these methods inherently require the cross sections to be calculated as the mesh is being
determined.

When cross section resonances are generated, temperature effects must also be taken into account.
Doppler broadening is used to account for changes in the resonance structure due to an increase in
temperature at thermal energies. During Doppler broadening, the overall cross section of the nucleus does
not change as the medium increases in temperature; rather, the effective cross section as seen by the
neutron changes with temperature. In particular, at 0 Kelvin, a neutron at an energy, E, “sees” the
resonance like the line shape that is calculated from an analytic expression. The cross section is a function
of the relative velocity between the neutron and the nucleus. As the temperature of the medium increases,
the nucleus experiences thermal motion that is assumed to vary according to a Maxwellian distribution in
temperature. Because the motion of the target nucleus causes the neutron to see a distribution of nucleus
velocities, the relative velocity and cross section values are functions of the distribution of nucleus
velocities. At 0 Kelvin, the cross section peak is the maximum value, and there is no mechanism that
would make the cross section value higher than the peak value. Moreover, a neutron at energy E “sees” a
cross section value that is averaged over the distribution of relative velocities. The averaging procedure
over the distribution of relative velocities is the basis for Doppler broadening. As the temperature of the
medium increases, there is a wider distribution of relative velocity values, and the effective peak cross
section value will decrease. At energies away from the resonance peak (i.e., “wings” of the resonance),
the effective cross section values increase with the associated temperature increase.

2.2.3.2 Unresolved Resonance Region

The unresolved region is an energy regime where the effects of resonances must be treated; however, the
resonances are so closely spaced in energy that it is either impossible or impractical to resolve the
individual resonance parameters. As a result, the unresolved resonance parameters are averages of
resolved resonance parameters over energy.

Resonances fit into families divided according to the angular momentum (ℓ-value) of the nucleus and the
angular momentum of the resonance (j-state). The unresolved resonance data in an ENDF/B evaluation
are statistical parameters derived from the resonances in each family that can be resolved. These resolved
resonances statistically predict how the resonances are spaced in the particular family, and they also the
characteristics of the resonances (e.g., the relative size of the fission or elastic scattering component of the
resonance).

9

All of the unresolved data are presented statistically and can be sampled using Monte Carlo techniques to
determine ladders of the resolved resonance parameters. Subsequently, the unresolved data can be used in
exactly the same fashion as the resolved resonance parameters determined from the measurement and
evaluation procedures. It is difficult to prove that the ladders of resonances adequately represent the
statistical behavior described in the unresolved resonance data. To alleviate this problem, the AMPX
module PURM generates pairs of resonance or levels surrounding the energy of reference given in the
ENDF evaluated data files.

Several codes employ a method developed by R. N. Hwang at Argonne National Laboratory for
calculating unresolved cross sections as a function of energy [26]. In the unresolved resonance region, the
resonance parameters are provided for the SLBW formalism, and the resonance widths are distributed
according to a chi-squared distribution with a specified number of degrees of freedom. Flux weighted
cross section values can be calculated over an evaluator-specified energy interval using the unresolved
resonance parameters. In the averaging process, the method by Hwang makes use of the narrow resonance
(NR) approximation, and the resulting expressions for the average cross section values can be expressed
in terms of fluctuation integrals that are also defined in terms of the Doppler broadening ψ and χ
resonance line shape functions. Despite the simplifications from the NR approximation, the resulting
expressions are quite complicated and involve integration of the resonance widths over the evaluator
specified chi-square distributions. The method by Hwang makes use of special Gaussian-like quadratures
that permit integration over the probability distributions and the ultimate calculation of averaged point
cross sections as a function of energy. These averaged point value curves are very smooth functions in
energy, and no attempt is made to actually determine the extreme variation in the cross sections that
actually are in the real cross sections. This technique is employed in AMPX modules PRUDE and
POLIDENT to processes data in the unresolved energy range and form the smooth average cross section
functions for selected temperatures and values of a background cross section. The background cross
section values are used in the NR approximation to account for other nuclides being mixed in with the
nuclide at different concentrations.

2.2.4 Scattering Kinematics

The development of a MG library requires CE cross section data coupled with an appropriate energy
group structure and weighting spectrum. In the preceding sections, brief discussions are provided for each
of these components; however, a MG library cannot be complete without group-to-group scattering
matrices. As expected, the point data, energy-group structure, and weighting spectrum must be used to
calculate the terms in a scattering matrix; however, additional information must be provided to describe
the physics of a particle collision with a target nucleus. The additional information can be referred to as
scattering kinematics.

Aside from a specification of the differential cross section as a function of energy and angle, kinematics
information is not provided in an ENDF/B evaluation for two body processes (e.g., elastic or discrete
level inelastic scattering). All of the parameters necessary to use in the kinematics equations (e.g., the
mass ratio and Q values of the inelastic levels) are given in the files, but the evaluation assumes that the
cross section processing code accounts for the conservation of energy and momentum in the calculation
of transfer matrices.

The kinematics for systems of three or more bodies also must conserve energy and momentum; however,
for these cases, there is no general solution since the equations are intractable. Moreover, the kinematics
must be presented in some abstract manner in an ENDF/B evaluation (i.e., either as a tabular or analytic
fit to some experimental behavior or to some simplified model for the nuclear process). The matrices for
multibody interactions can be given in three different ways in the ENDF/B evaluations:

10

1. The process is assumed to scatter isotropically in the laboratory system. Note that the laboratory
system must be used because the transformation from the center-of-mass to the laboratory system
would require a solution of the kinematics expressions. Also, the secondary energy distribution of
particles is given as a tabular or an analytic distribution.

2. The angular variation of the differential cross section is expressed in a tabular or analytic format that
is assumed to be independent of the secondary energy distribution expressed in item one.

3. The angular and energy variation of the scattering distributions are dependent and are presented in a
tabular or analytic manner or a combination of both.

AMPX uses procedures developed explicitly for the current release of the system. Furthermore, these new
procedures are based on a preference to have a single collection of subroutines with the flexibility and
generality to permit the calculation of transfer matrices for any kind of reaction (e.g., two-body or
multibody processes for any particle type such as neutrons, gamma-rays, etc.). These procedures are
described in the sections of this document that describe the Y12 module.

2.3 CE LIBRARIES

Many codes can now use CE data directly without the need to collapse to a MG first. While the self-
shielding sequences in SCALE involving the CENTRM module [37] use point-wise cross section data in
the resolved resonance range, CE libraries are also used for criticality methods [12]. The CE libraries
contain the same elements as the MG libraries, and except in the case of kinematics data, the point-wise
data are simply stored without the need of a flux. The kinematics data are converted to probability
distributions. For each incident energy, a cumulative probability distribution with respect to all possible
exit angles is calculated based on the information given in ENDF. For each exit angle, a conditional
cumulative probability is also given with respect to the exit energy.

2.4 THE MODULAR CONCEPT

The introduction of this manual describes AMPX as a modular programming system. The modular
concept isolates a single computing function into a single independent code and provides a
communication channel between codes using a standard interface or file. In the limit to this approach, a
code would require little or no user interaction. Moreover, the code would perform a single function with
an input and an output file specification. There are obvious penalties associated with the limit, because it
would require the selection of a formidable number of modules to complete some tasks.

The popular UNIX operating systems prevalent on many modern computing platforms use a similar
modular structure. UNIX commands are equivalent to codes with an input and output specification. These
specifications can originate from a previous command, or they can be passed to a subsequent command.
UNIX commands are generally associated with a single function, but various commands have many
options and methods for redirecting output. In addition, the UNIX command execution sequences can be
written into scripts that can be re-executed by simply invoking the script.

AMPX uses a similar modular concept. Each module can have options that are specified as part of the
input, and ideally, these input options are minimized. A module may require one or more standard input
files (e.g., MG or point cross section libraries) and may produce one or more standard output files
(e.g., MG or point cross section libraries). The input to AMPX is equivalent to a UNIX script. The
modules (commands) are selected, and the options are given in the same stream as input data to the code.
Each code can use default locations for required input/output files, or a user can override the default
values as part of the input data. Files to be retained can be named and stored using a special module,

11

referred to as “SHELL,” that allows the user to insert UNIX commands into the AMPX execution
sequence. As with UNIX scripts, the AMPX code selection and input data information can be retained for
subsequent re-execution or modification to perform other similar tasks.

2.4.1 Execution Sequences

This section describes the procedure for constructing an AMPX execution sequence in a schematic
fashion. Also, a description of the input data specifications is provided for the system’s driver module.

The AMPX driver module is a variation of the driver module used in SCALE, providing a convenient
method for selecting codes collected together in a standard program library, introducing new codes, or
importing other codes from standard program libraries. A code is selected by the simple command:

=CODENAME

For example, if the Y12 module is desired for execution, the command “=Y12” would be entered,
followed by the input data for the Y12 module. The input data can be written in any format that the code
uses. In previous versions of AMPX, all modules required an input scheme known as “FIDO” (described
in section 10). Many of the codes in AMPX still use the FIDO input structure, but newer codes use the
keyword free-format driven input, the fixed input scheme, or whatever the code developer prefers. An
execution sequence follows the pattern:

=module_name

input options for the module

end

=next_module_name

input options for the next module

end

=next_module_name

•

•

etc.

Note that each module is specified with an = sign followed by the name of the module, with no space
between the first character of the module name and the equal sign. The input options for the module are
specified on the lines following the name of the module. The termination of a module input is specified
with an end card starting in column 1. The remaining modules in the sequence are specified in a similar
manner as the first module.

A sample AMPX execution script would have the following form:

=shell

ln -fs /home/centrm_libraries/endfb6/broaden/u235 ft33f001

end

12

=pickeze

0$$ 33 34

1$$ 1 1 1 1 0 0 e t

2$$ 9228

3$$ 3

4$$ 1

5** 0.

t

end

=charmin

single to plot in=34 out=35

end

=shell

cp ft35f001 /home/u235.tot

end

In the above example, the PICKEZE and CHARMIN modules are specified in the input file. Note that the
SHELL specification is used to permit the execution of UNIX commands during the AMPX execution
sequence. In the first SHELL command, the u235 data file is linked to Logical Unit 33 (i.e., ft33f001) in
the AMPX working directory prior to executing any AMPX module. Subsequently, the PICKEZE and
CHARMIN modules are used to process the data. Based on the CHARMIN input specifications, the
output is written to Logical Unit 35. When AMPX is executed on a particular machine, the code system is
executed in a temporary working directory on the computing platform. If the user wants to keep a data file
produced by a specific module, the SHELL command should be used to copy the file to a desired location
as determined by the user. In the above example, the data file produced by CHARMIN (i.e., ft35f001) is
copied to the /home directory and renamed u235.tot.

The installation procedure will have put a command file ampxrte into the installation directory, which
takes the above input as a command line argument.

Several points are noted below:

• Since AMPX executes in a temporary directory, all external files accessed during the run must be
given using the absolute path. The script sets an environment variable, RTNDIR, which points to the
current working directory. Thus files in that directory can also be referenced as
${RTNDIR}/localFile, where localFile is the name of the desired file.

• AMPX uses logical unit numbers to identify files. Logical units are bound to files ftnnf001, where nn
denotes the logical unit number to use. The number format is always two digits long.

13

• Libraries to be used with SCALE must be in big-endian format. By default, AMPX produces data
files in native format. However, if the environment variable SCALEXS is set to yes, then the
following logical unit numbers are written or read in big-endian format: 60-70, 80-89.

14

3. PROCESSING ENDF DATA

In order to produce MG and CE libraries, various AMPX codes read evaluated data from ENDF
formatted files [1]. A collection of ENDF/B formatted evaluation are called tapes, and they contain one or
more evaluations. Evaluations are made up of files, which can be thought of as sections with specific
types of information. The following table gives a brief overview of the file information processed by
AMPX at this writing:

File Number Description

File 1 File 1 contains two parts:
• general information about the evaluation in text format (not used for

processing), and
• number of neutrons per fission, delayed neutron data, and number of prompt

neutrons if the nuclide is fissionable. The data are processed by module
POLIDENT.

File 2 File 2 contains resolved and unresolved resonance parameters. The information is
processed by modules POLIDENT, PRUDE, and PURM.

File 3 File 3 contains point-wise cross section data and Q values for each reaction. The
information is processed by modules POLIDENT, PRUDE, PURM and Y12.

File 4 File 4 contains angular distributions of secondary particles for incident neutrons. The
information is processed by module Y12.

File 5 File 5 contains energy distributions of secondary particles for incident neutrons. The
information is processed by module Y12.

File 6 File 6 contains angular and energy distributions of secondary particles. It is more
general than the information that can be given in Files 4 and 5. The information is
processed by module Y12.

File 7 File 7 contains thermal neutron scattering data. The information is processed by
modules Y12.

File 8 File 8 contains radioactive decay and fission product data.

File 9 File 9 contains multiplicities for production of radioactive nuclides. The information is
processed by module POLIDENT, which saves the data for further processing by
LIPTON.

File 10 File 10 contains cross sections for production of radioactive nuclides. The information is
processed by module POLIDENT, which saves the data for further processing by
LIPTON.

File 12 File 12 contains the photon production multiplicities and transition probabilities. The
data are processed by module Y12.

File 13 File 13 is similar to File 12, but gives absolute photon production cross sections. The
data are processed by module Y12.

File 14 File 14 contains photon angular distributions. The information needs to be combined
with Files 13 and 15 data to generate photon yield scattering matrices. The data are
processed by module Y12.

15

File 15 File 15 contains energy distributions for emitted photons. The information must be
combined with Files 12 and 14 data to generate photon yield scattering matrices. The
data are processed by module Y12.

File 23 File 23 gives the smooth photon interaction cross sections for incident gammas. The
information is processed by module Y12.

File 27 File 27 gives the form factors and scattering functions for photons.

File 31 File 31 gives covariance information for the average number of neutrons per fission. The
information is processed by module PUFF-IV.

File 32 File 32 gives covariance information for the resonance parameters. The information is
processed by module PUFF-IV.

File 33 File 33 gives covariance information for the neutron cross sections. The information is
processed by module PUFF-IV.

Fle 35 File 35 gives covariance information for exit energy distributions. The information is
processed by module CHICOV.

All ENDF evaluations contain a File 1, which provides textual information about the evaluation.

With respect to AMPX processing, the evaluations can be categorized into four groups:

• A standard incident neutron evaluation contains Files 1, 2 and 3 and possibly Files 4, 5, 6, 12, 13, 14,
15, 31, 32, and 33.

• A standard incident gamma evaluation contains Files 1, 23, and 27.

• A thermal moderator evaluation like 1H in H2O contains Files 1 and 7 only. Thermal moderator
evaluations are the only evaluations containing File 7 data.

• A decay file contains File 8 and is used to generate decay and gamma emission libraries for use in
depletion calculations.

• Incident neutron evaluations containing Files 9 and/or 10 and possibly Files 2 and/or 3 are used to
generate libraries containing branching information for use in depletion calculations.

At this writing, these are the only files processed by AMPX.

Several kinds of libraries are created by AMPX:

• MG or CE libraries for incident neutrons. These libraries are used for neutron transport
calculations, and they use information from Files 1, 2, 3, 4, 5, 6, 7, 12, 13,14, and 15. Note that
information from files 12–15 is only used in coupled neutron-gamma calculations.

• MG or CE libraries for incident gammas. These libraries are also used in transport calculations,
and they use information from Files 23 and 27.

• Covariance libraries for MG data. The libraries use information from Files 1, 2, 3, 31, 32, 33 and
35.

• Decay and gamma libraries for use in depletion calculations. These libraries use information from
Files 2, 3, 8, 9, and 10.

16

As stated above, thermal moderator evaluations only contain File 7 information, which gives cross section
data and scattering information in the thermal range. In a CE or MG library, the thermal information is
combined with data from a different evaluation outside the thermal range. For example, the thermal
moderator information is given for 1H in H2O in ENDF/B-VII.0. In order to make a full MG or CE
library, the thermal moderator information is combined with cross section and scattering information from
1H, which is referred to as the fast evaluation coupled to the thermal moderator H2O. For a standard
evaluation, a free gas treatment is used to calculate the thermal scattering matrices.

Some modules are required to create the libraries supported by the AMPX system. The detailed steps
needed to create the various types of libraries are outlined in the next sections. While it is relatively easy
to set up the required sequence of modules for one evaluation, a typical library has hundreds of nuclides.
A graphical user interface (GUI) called ExSite has been provided to help set up inputs to process all
desired evaluations. A detailed description of the GUI is given in Section 4. The following section
contains an overview of the steps required. A more detailed description of the functionality of some of the
key modules is provided in Sect. 6.

3.1 CREATING AN MG LIBRARY

The general flow of a sequence to generate a neutron MG library is show in Fig. 1, and the flow is
described in detail below. Inputs for all desired evaluations are typically created automatically using the
AMPX GUI.

Fig. 1. AMPX sequence for producing neutron MG library for one isotope.

The procedure is as follows:

1. The module POLIDENT is used to create the point-wise cross section at 0 K for all neutron
evaluations, excluding thermal moderators. The module POLIDENT reconstructs the point-wise data
in the resolved and unresolved range if File 2 provides resonance parameters. These data are

17

combined with the point-wise data given in File 3. The module TGEL is used to reconstruct the total
cross section from the partial reactions.

2. The module BROADEN is used to Doppler broaden the point-wise cross section data created in steps
1 and 2. The temperatures at which broadening is required include the temperature at which infinite
dilute cross section data are to be saved in the library, as well as all temperatures for which
Bondarenko factors are to be generated.

3. The module TGEL is used to reconstruct the total cross section from the partial reactions after
broadening.

4. The module Y12 is used to generate the kinematics data for neutron scattering. If a coupled library is
desired, Y12 is also used to generate the gamma production scattering data.

5. A suitable weighting function for neutron data is generated using the module JERGENS. The user can
also supply a temperature and ZA dependent weighting function.

6. The module PICKEZE is run to select the 1-D cross section at the desired temperatures from the data
generated in step 3.

7. The module X10 is run in neutron mode to generate the neutron 1-D cross section data and the
neutron scattering matrices. The module uses the point data generated in step 6, the kinematics data
from step 4, and the weighting function from step 5.

8. If the library contains thermal moderator data, the module Y12 is used to generate point-wise cross
section and kinematics data for the thermal moderators from File 7.

9. The module X10 is run in neutron mode to generate the thermal moderator data. The module uses the
point data and kinematics data from step 8 and weighting function from step 5.

10. If thermal moderator data do not exist, the module Y12 is used to generate thermal scattering matrices
for free gas scattering. The weighting function generated in step 5 is used for the MG collapse
performed in neutron mode in X10.

11. If the MG library should contain gamma production data, module X10 is run in yield mode using the
point data generated in step 6, the kinematics data from step 4, and the weighting function generated
in step 5.

12. If a coupled library is desired, the module Y12 is used to generate to generate point-wise cross section
and kinematics data for all gamma evaluations to be included in the library.

13. A suitable weighting function for gamma data is generated using the module JERGENS.

14. The module X10 is run in gamma mode to generate a gamma MG library. The module uses the point
data and kinematics data from step 11 and the weighting function from step 13.

15. If a neutron evaluation contains unresolved resonance data, module PRUDE is used to generate the
cross section data in the unresolved resonance range for the desired temperatures and background
values. If the probability tables are to be used for the creation of f-factors, module PURM and
PURM_UP are used to generate probability tables.

18

16. The module FABULOUS is used to generate the Bondarenko factors. It uses the point-data generated
in steps 3 and 15 (if applicable) and the MG library generated in step 7. The neutron weighting
function generated in step 5 is used to collapse point-wise data. The MG library created in step 9 is
used to ensure that the infinite-dilute cross sections used to generate the Bondarenko factors are
consistent with the 1-D cross section in the library. If the use of probability tables in the unresolved
range is desired, FABULOUS_URR is used instead.

17. The module SIMONIZE is used to combine all the parts into one MG library. SIMONIZE
recalculates all redundant cross section data and renormalizes scattering matrices as needed.

18. The module RADE is used to ensure that the library is correct.

19. The module AJAX is used to bind the MG libraries for each evaluation produced in step 17 into the
final MG library.

3.2 CREATING A CE LIBRARY

As with MG library generation, inputs for all desired evaluations are typically created automatically using
the AMPX GUI. The procedure to produce neutron and gamma CE libraries is outlined below.

Fig. 2. AMPX sequence for producing neutron CE libraries for one isotope.

For a standard neutron evaluation, the process to generate a CE library is as follows:

19

1. The module POLIDENT is used to create the point-wise cross sections at 0 K for all neutron
evaluations, excluding thermal moderators. Module POLIDENT reconstructs the point-wise data in
the resolved and unresolved range if File 2 provides resonance parameters. These data are combined
with the point-wise data given in File 3. The module TGEL is used to reconstruct the total cross
section from the partial reactions.

2. The module BROADEN is used to Doppler broaden the point-wise cross section data created in
step 2.

3. The module TGEL is used to reconstruct the total cross section from the partial reactions.

4. The module PICKEZE is run to eliminate the 0 K data for reactions that are Doppler broadened.

5. The module TGEL is run again to re-construct total, capture, inelastic, and absorption cross sections.

6. The module Y12 is used to generate the kinematics data for neutron scattering and gamma-production
scattering. The data are produced in a tabulated double-differential form.

7. The module JAMAICAN is run to convert the double differential point-wise distribution into a
marginal probability distribution in angle and conditional probability distribution in exit energy.

8. If the evaluation contains unresolved resonance data, the modules PURM and PURM_UP are run for
each desired temperature to generate probability tables in the unresolved resonance range.

9. The module PLATINUM is run to create the final CE library. The data produced in steps 5–8 are
combined, and the 1-D collision probabilities are calculated.

When processing a thermal moderator, the thermal moderator data given in File 7 must be combined with
a suitable evaluation in the higher energy range (fast data). In this case, the procedure is as follows:

1. The module POLIDENT is used to create the point-wise cross section at 0 K for the fast data (for
example, 1H if generating a library for H2O)

2. The module TGEL is used to reconstruct the total cross section from the partial reactions.

3. The module BROADEN is used to Doppler broaden the point-wise cross section data created in step
2 to the same temperatures used in the thermal evaluation.

4. Steps 4–8 from the procedure for a standard evaluation are run to produce the kinematics data for
nonthermal reactions (for example, 1H if generating a library for H2O).

5. The module Y12 is run to process the thermal data from File 7. The module JAMAICAN is run to
produce a marginal probability distribution in angle and conditional probability distribution in exit
energy. In addition, a 1-D cross section is produced for thermal reactions 1007 and 1008.

6. The module TGEL is used to generate the sum of the 1-D thermal cross section data. The result is
stored in MT=2, the elastic cross section.

7. The module SPLICER is used to override MT=2 in the data produced in step 3 in the thermal range
with the data produced in step 6.

20

8. The module TGEL is run once more to update the total cross section after the update in the elastic
cross section.

9. The module ZEST is run to combine the 1-D thermal data from step 5 with the data produced in step
8 into one file.

10. The module PLATINUM is run to create the final CE library. The data produced in steps 4, 5, and 9
are combined and the 1-D collision probabilities are calculated.

In the case of incident gammas, the ENDF evaluation contains Files 23 and 27. The procedure to process
a gamma CE-library is as follows:

1. The module Y12 is run to generate 1-D point-wise gamma data and kinematics data.

2. The module JAMAICAN is run to generate marginal probability distribution in angle and conditional
probability distribution in exit energy.

3. The module PLATINUM is run to create the final CE library. The data produced in steps 1 and 2 are
combined into one library.

21

4. USING EXSITE

To generate an MG or CE library, a number of modules have to be run in sequence. Some information
from the ENDF evaluation is needed before preparing the input files. For example, some modules are
only run if the evaluation contains unresolved resonance data. For thermal evaluation one or more
evaluations need to be designated as fast evaluations. While this can be done by the user on a per
evaluation basis, it is easier to generate all the information automatically. The program ExSite helps the
user in collecting needed information from the ENDF evaluations and generates the input files. In
addition ExSite allows the user the flexibility to edit the input for individual modules.

In generating input files ExSite uses two XML-formatted files that can be automatically generated from
user selected ENDF tapes. The first file contains information that is automatically extracted from the
ENDF tapes. The second file is a configuration file containing information about which fast evaluation(s)
are to be combined with a given thermal evaluation and nuclides that need a special ID if the library is to
be used with SCALE. The second file is also automatically produced, but the user must review the
information before actually using the file. Please note that the ID values for metastable nuclides and
evaluations containing thermal moderators have changed between SCALE 6.1 and SCALE 6.2. ExSite
tries to automatically generate SCALE 6.2 ID values. A detailed description of the content of the two files
can be found in Sect. 8. This section focuses on the use of ExSite.

4.1 CREATE AN XML LISTING

The user must first select “Read new ENDF data” from the “Ampx” menu. See Fig. 3 for details. This
will open a wizard to guide the user through the selection of the ENDF tapes. The wizard has three steps:

1. The user selects the ENDF tapes to be parsed. The window is shown in Fig. 4. More files can be
added by pressing the “Add” button, which opens a file dialog as shown in Fig. 4. The list of added
files can be reviewed, and any unwanted files can be removed. The “Remove” button becomes active
when one or more file names are selected.

2. In the next step, the selected files will be parsed, as shown in Fig. 5. The “Next” button becomes
available when all ENDF tapes are parsed. If an error occurs, it will be printed on the screen, and the
“Next” button will not be enabled.

3. The final step is to select the output file. The wizard window is shown in Fig. 6. The “Select Output”
button will open a file dialog, allowing the user to select the file name for the ENDF listing. If any of
the ENDF tapes selected contains metastable nuclides or a thermal evaluation, the text shown in Fig.
6 will be displayed. In this case, the user should review the configuration file to make sure the correct
ID values are chosen.

The ENDF listing generated by the wizard can now be used for expanding templates.

22

Fig. 3. Start reading abbreviated ENDF tapes.

Fig. 4. Select the ENDF tapes from which to create the listing.

23

Fig. 5. Progress bar to indicate that ENDF tapes are being parsed.

24

Fig. 6. Select the output for the ENDF listing.

4.2 USING TEMPLATES

ExSite is used to generate input files by combining templates and ENDF listings. Templates to generate
the major types of libraries are included with ExSite. In addition, users can add custom templates. In order
to use templates, select “New Template File” from the “File” menu, or open an existing template file by
selecting “Open File” from the “File” menu. Template files have an extension of “tem.” After opening the
file, a palette appears next to the editor for the input file. Click on one of the templates and drag it into the
editor as shown in Figure 7. Once the mouse is released a dialog appears that allows the user to enter data
relevant to the selected template. The dialog is shown in Fig. 8. The xml listing generated in the last
section needs to be given under the “evals” keyword, and the name of the input files generated is listed
under the “input” keyword. Note that the tag name for each evaluation will generally be added to the
name of the input. All file names used in the template are interpreted as relative to the template file except
if absolute file names are used. The generated input files will use relative file names where possible,
except if “absolute” is selected. After pressing okay, the keyword-based input will appear in the editor
window. The editor window allows the user to alter any of the wizard-generated input via keyboard input.
Selecting “Expand Template” from the “Ampx” menu or pressing the appropriate button on the toolbar
will generate the input files. See Fig. 9 for details.

25

Fig. 7. Drag a template into an template file.

26

Fig. 8. Add parameters to create the input files.

27

Fig. 9. Expand the templates into input files.

To generate an MG library, the input files generated from the templates listed below are run in the order
specified:

1. point1d – generates point-wise cross section data. The cross section data are broadened to user-
specified temperatures. All temperatures at which Bondarenko data are wanted must included.

2. neutron_mg – generates neutron MG data. This includes free gas data if desired, along with thermal
data for thermal moderators if desired. In addition, gamma production data are generated if selected
by the user.

3. gamma_mg – generates gamma MG data if a coupled library is desired. This template is used with the
corresponding input files.

4. ptable – generates probability tables if Bondarenko factors from the probability table are desired.

5. bondarenko – generates full range Bondarenko factors. Alternately, bondarenko_prob is used to
generate the Bondarenko factors using the probability method in the unresolved resonance range.

6. bind_mg – combines the data generated in steps 1–5 into one library. This makes one MG library for
each evaluation.

7. combine_mgs – combines the libraries for each evaluation created in step 5 into a final master library.

If the user wants to create a master library file for a single evaluation, the template “master” can be used,
which combines steps 1–6 except for thermal moderators. If the library is to contain thermal moderator
data, then steps 1–6 must be followed.

28

To create a neutron CE library, the input files generated from the templates listed below must be run in
the order specified:

1. point1d – generates point-wise cross section data. The cross section data are broadened to user-
specified temperatures.

2. ptable – generates probability tables for evaluations that contain unresolved resonance data.

3. neutron_ce_partial – generates CE libraries.

The template neutron_ce combines steps 1–3 into one template.

To generate decay libraries, the inputs generated by the template listed below are run in the order
specified:

1. origenlib –generates ORIGEN libraries (AMPX working libraries with special MT values encoding
the level of the parent and child) for each desired evaluation.

2. combine_mgs – combines the libraries created in step 1 into one library.

To generate covariance libraries, the inputs generated by the following template are run:

1. master – creates a neutron master library.

2. point1d – creates point-wise data.

3. puff – creates the covariance matrices. The input file uses either the data generated in step 1 or step 2,
depending on how the cross section data should be passed to module PUFF-IV.

4. combine_cov – combines the covariance matrices produced in step 3 into one library.

If the user is producing covariance information for one evaluation, the template covariance, which
combines steps 1–3 into one template, can also be used.

ExSite provides some templates to generate SCALE input files for infinite dilute test cases that provide a
quick check for the generated libraries:

• allnucinf – infinite homogenous medium case
• allnuclat – a lattice case to test data in the thermal range

4.3 EDIT INPUT FILES

ExSite can be used to edit and create AMPX input files. To read an input file, the user opens a new input
file or selects an existing input. Once the file is opened, a palette appears. The user drags one of the input
modules to the input editor in the same the way the template input palette was used in Figure 7. If an entry
repeats, an additional dialog will often appear. An example is the input for POLIDENT. The initial dialog
is shown in Fig. 10.

29

Fig. 10. Add nuclide info for POLIDENT.

Once the “Edit” button is pressed, an additional dialog appears. The dialog is shown in Figure 11. The
“Add” button adds a new entry. If there are already entries, selection of the desired entry will open it for
editing. The “Remove” and “Activate” button will also become available, enabling the user to remove or
reactivate an entry.

30

Fig. 11. Additional dialog for repeating entries.

Once the entry is open for editing, the user can edit the file, as shown in Fig. 12. Please note that the
“Save” and “Cancel” buttons pertain to the current entry, and the “Done” button closes the secondary
dialog.

31

Fig. 12. Edit repeating entry.

The GUI allows the user to add new input instructions and to modify existing ones. To edit an existing
entry, the user simply drags the desired input to the desired position, as shown in Fig. 13.

32

Fig. 13. Drag to edit input instructions.

To run an input file, the user presses the “A” button, as shown in Fig. 14. This will add the task into the
“Process List” window. The status of the job will be updated automatically, or the user can press “Update
Status” to immediately update. Once the job is finished, the user can right click on the job title and select
to view the output or the message file. Input files can also be run directly from the command line using
ampxrte.

33

Fig. 14. Run AMPX input file in ExSite.

Several tasks can be run in order. This is very helpful if processing all the input files for a library. To do
so, select “Add Task List” from the “Scheduler” menu. As shown in Fig. 15, a new wizard appears that
will guide the user through the process.

34

Fig. 15. Start wizard to add more than one task.

To start the wizard for adding more than one task, the user must select the directory in which the input
files are to be run. This is not necessarily the directory in which the input files are located. If the input
files are not in the same directory in which they will be run, they must be copied to that directory prior to
starting AMPX. In a later step, the output and message file generated by AMPX will be returned to the
original directory of the input file. As shown in Fig. 16, the user must press the “Change Scheduler”
button before moving on to the next step.

35

Fig. 16. Select the directory in which to run AMPX.

In the next step, the user selects the input files that should be run. After pressing the “Finish” button, the
selected tasks are displayed in a new “Task List” bar, as shown in Fig. 17. At this point, the jobs have not
yet been started. To start the jobs, press the “(Re)Schedule” button, which will submit the jobs into the
queue. To check on the status of the jobs, press the “Update Status” button. On a Unix/Linux or Mac
operating system, the program can now be terminated, and the jobs will continue to run in the
background.

36

Fig. 17. Manage queue of submitted jobs.

37

5. DATA STRUCTURES

In the processing of nuclear data, AMPX must accommodate different data structures, all of which are
encapsulated in a C++ or Fortran object. This allows easy access to the underlying data independent of
the disk format of the data. There are three broad categories of data used in AMPX: (1) point-wise data,
which includes cross section data and kinematic data, (2) group-averaged data, which includes all cross
section data and matrices in a MG library, and (3) probability data, which includes probability tables and
kinematic data in a CE library. In a given category, many of the same manipulations are applicable, and
similar coding can be shared for all data structures in the same category.

5.1 POINT-WISE DATA

There are two types of point-wise: (1) 1-D data like cross sections as a function of energy, and
(2) kinematic data as a function of incident energy, exit energy, and exit angle. The basic functionalities
needed to accommodate point-wise data involve interpolation at any desired energy or angle, basic
arithmetic combinations of several point-wise data of the same type, and comparison between two
different point-wise data of the same type. AMPX includes template classes that capture parts of the
procedure common to all data types and then adds specialization as needed. As in ENDF, a unique
number describes each reaction. Reaction numbers are the same as in ENDF, augmented with additional
values for special data needed in the transport codes.

Point-wise data allow discontinuities (i.e., there can be two identical energy or angle values with different
function values). This frequently occurs if two different evaluations are used in different energy regions.
Special care needs to be taken at these points if interpolating or manipulating the data to preserve these
discontinuities.

5.1.1 1-D data

1-D point-wise data are stored in a format very similar to the TAB1 structure in the ENDF manual
[Error! Bookmark not defined.], which supports energy and cross section values, along with a
prescription on how to interpolate the cross section on grid points not given. The same interpolation
values as in ENDF are allowed: (1) histogram, in which y is constant in x, (2) linear-linear, in which y is
linear in x, (3) linear-log, in which y is linear in ln(x), (4) log-linear, in which ln(y) is linear in x, and (5)
log-log, in which ln(y) is linear in ln(x). Internally, AMPX always uses a linear-linear interpolation. Each
TAB1 record also includes a header record that contains the reaction number and the temperature of the
cross sections data.

5.1.2 Kinematic data

Kinematic data are used in three different forms in AMPX:

𝑓(𝐸,𝐸′, 𝜇) =
𝑑2𝜎
𝑑𝐸′𝑑Ω

(𝐸 → 𝐸′, 𝜇)
double-
differential

𝑓(𝐸,𝐸′, 𝜇) = �
2𝑙 + 1

2
𝑙

𝑎𝑙(𝐸,𝐸′)𝑃𝑙(𝜇)
Legendre
coefficients, and

𝑓(𝐸,𝐸′,𝜇) = �𝑐𝑙
𝑙

(𝐸,𝐸′) cosine moments

where

38

E is the incident particle energy,

E’ is the exit particle energy,

 is the cosine of the exit angle,

represents the Legendre polynomials of order l,

represents the Legendre coefficients of order l, and

represents the cosine coefficients, calculated as

� 𝑓(𝐸,𝐸′,𝜇)𝜇𝑙
1

−1
𝑑𝜇

The kinematic data are stored in C++ classes that allow easy manipulation of the underlying data. The
angular distribution for a given incident and exit energy is encapsulated in an ExitEnergy object that
stores the exit energy and the angular distribution. An integer flag indicates whether the distribution is
given in Legendre moments, cosine moments, or as a tabulated cosine/value distribution. The distribution
can be flagged as being discrete, as would be encountered for coherent elastic scattering in crystalline
materials. A list of ExitEnergy objects is collected in an IncidentEnergy object, which also stores the
value of the incident energy. A flag indicates whether the exit energy distribution describes an elastic or
discrete-inelastic reaction, information needed for conversions between center-of-mass and laboratory
system. The exit-energy distribution can also be marked as discrete, as would be encountered for discrete
gamma lines. A list of IncidentEnergy objects is collected in a KinematicBlock object, which also stores
reaction parameters like the reaction type, mass ratios of incident and exit particles, and the Q value. A
flag indicates whether the data are given in the center-of-mass or laboratory frame of reference and
whether the data are absolute or relative (i.e., divided by the 1-D cross section at the given incident
energy).

5.1.3 Mesh generation

When combining and reconstructing point-wise data, it is often necessary to create an energy or angle
mesh for the new distribution. The new mesh is generated by first calculating an initial mesh, most often
the union mesh of the distributions to be used in the operation. If any of the distributions has a
discontinuity, they are added as a discontinuity to the union mesh. If the distributions do not all start or
end at the same energies, the starting and end points are added as discontinuities as well. For example if
combining cross section data in the resolved range that ends at Er with cross section from the unresolved
range that starts at Er, the energy Er is added twice to the mesh. The mesh is then refined using a halving
scheme between two energies or angles: interpolate the distribution at the middle energy or angle and
calculate the distribution from an appropriate function and compare the two resulting distributions. If the
two distributions agree within a user-supplied precision, the mesh between the two points is dense
enough, and the process is repeated with the next set of points. If the two distributions are not the same,
the middle energy or angle is added to the mesh, and the process is repeated between the low value and
the middle value. A similar procedure is applied to thin the number of mesh points, where the actual
distribution at a given energy or angle point is compared to the interpolated distribution. If those two
distributions are equal within a user-specified precision, the intermediate energy or angle point is
eliminated from the mesh. Mesh points with a discontinuity are never eliminated during a thinning of the
mesh. The resulting distribution is calculated on the final mesh. If the new distribution results from an
arithmetic operation on other distributions, such as adding or subtracting, special care needs to be taken at
discontinuities. If any of the distribution has a discontinuity, it is added as a discontinuity on the final
mesh and the calculation is performed twice: once by interpolating the values on the initial distribution on

39

the left side and once on the right side of the discontinuity, which will return the same value if the
distribution has no discontinuity. As pointed out, if the contributing distributions do not start and end at
the same energy or angle, a discontinuity is added to the final mesh at the starting and ending points and
the calculation is performed twice: once with the distribution that starts or ends and once without that
distribution.

AMPX has very general codes that combine point-wise data from different distributions of the same type
or that generate distributions from a function. The general code calls on specialized functions that
interpolate and compare the distribution at a given energy or angle, which are described in more detail
below. In addition, the user can supply arithmetic functions that are to be performed on the initial
distributions to form the desired distribution or theoretical functions (such as a Maxwellian) to generate a
distribution and a suitable mesh.

The advantage of generalized code is that mesh generation and treatment of discontinuities is localized.

5.1.4 Interpolation

In the case of 1-D data, interpolation at any energy value not given simply uses the interpolation rules
(1–5 as described above) to calculate the intermediate value. The same is true if interpolating for a desired
angle if the kinematic data are given in double-differential format. All point-wise data can contain
discontinuities and interpolation at a discontinuity point can be ambiguous. Therefore, all routines that
interpolate point-wise data have a flag indicating whether the left, right, or intermediate value is wanted at
the point of the discontinuity. The flag has no effect at other energy or angle values.

5.1.4.1 Interpolating in exit energy

If the angular distribution is given as Legendre coefficients or as cosine moments, the moments are
simply interpolated for the desired exit energy at the correct order using the specified interpolation law. If
the angular distribution is given in tabulated form (i.e., as a function of angle cosine), a union mesh of the
angles from the two exit energies is formed and refined via a halving scheme. The value for each angle on
the resulting mesh is calculated by interpolating the value for the angle at the two exit energies and
interpolated at the desired exit energy.

5.1.4.2 Interpolation in incident energy

For interpolation in incident energy, ENDF and AMPX define additional interpolation laws besides the
one defined for other point-wise data: corresponding point interpolation (11–15) and unit-based
interpolation (21–25). Assuming there are two distributions—𝑓1(𝐸1,𝐸′,𝜇) and 𝑓2(𝐸2,𝐸′, 𝜇)—where
𝑓1(𝐸1,𝐸′, 𝜇) extends from 𝐸′1𝑙𝑙𝑙 to 𝐸′1

ℎ𝑖𝑖ℎ , and 𝑓2(𝐸2,𝐸′, 𝜇) extends from 𝐸′2𝑙𝑙𝑙 to 𝐸′2
ℎ𝑖𝑖ℎ. The objective

is to interpolate 𝑓𝑚(𝐸𝑚,𝐸′,𝜇). For interpolation schemes 1–5, one proceeds as in the case of angular data,
generating an initial union mesh of exit energies as refined by a halving scheme. For each exit energy on
the union mesh, the new exit energy distribution is interpolated as described above.

For unit-based and corresponding point interpolation, the lowest exit energy at the intermediate incident
energy is

𝐸′𝑚
𝑙𝑙𝑙 = 𝐸′1

𝑙𝑙𝑙 + 𝐸𝑚−𝐸1
𝐸2−𝐸1

�𝐸′2
𝑙𝑙𝑙 − 𝐸′1

𝑙𝑙𝑙�, (Error!
Bookmark

not
defined.1)

40

and the highest exit energy is

𝐸′𝑚
ℎ𝑖𝑖ℎ = 𝐸′1

ℎ𝑖𝑖ℎ + 𝐸𝑚−𝐸1
𝐸2−𝐸1

�𝐸′2
ℎ𝑖𝑖ℎ − 𝐸′1

ℎ𝑖𝑖ℎ�, (2)

with a difference in calculating the distributions for intermediate exit energies. In both cases,
corresponding exit energies E’1 in the lower incident energy panel and E’2 in the upper incident energy
panel are determined. From these, a unit-based value is calculated:

𝑥′1 = 𝐸′1 − 𝐸′1𝑙𝑙𝑙 (Error!
Bookmark

not
defined.3)

and

𝑥′2 = 𝐸′2 − 𝐸′2𝑙𝑙𝑙, (Error!
Bookmark

not
defined.4)

which is then interpolated to a value of

𝑥′𝑚 = 𝑥′1 + 𝑥′2−𝑥′1
𝐸2−𝐸1

(𝐸𝑚 − 𝐸1) , (Error!
Bookmark

not
defined.5)

and the exit energy in the intermediate panel is

𝐸′𝑚 = �𝐸′𝑚
ℎ𝑖𝑖ℎ − 𝐸′𝑚𝑙𝑙𝑙�𝑥′𝑚 + 𝐸′𝑚𝑙𝑙𝑙. (Error!

Bookmark
not

defined.6)

The value of the distribution at E’m is then calculated using the interpolation law (1–5), obtained by
subtracting 10 or 20 from the given interpolation scheme. The difference is in the determination of the
corresponding points. If using the unit based approach (21–25), points are chosen so that:

𝐸′1−𝐸′1
𝑙𝑙𝑙

𝐸′1
ℎ𝑖𝑖ℎ−𝐸′1

𝑙𝑙𝑙 = 𝐸′2−𝐸′2
𝑙𝑙𝑙

𝐸′2
ℎ𝑖𝑖ℎ−𝐸′2

𝑙𝑙𝑙.

(Error!
Bookmark

not
defined.7)

For the method of corresponding points (11–15), values E’1 and E’2 are chosen so that the normalized
cumulative integral over the exit energies agree:

∫ 𝑓1�𝐸1,𝐸′, 𝜇�𝑑𝐸′𝐸′1
𝐸′1
𝑙𝑙𝑙

∫ 𝑓1�𝐸1,𝐸′, 𝜇�𝑑𝐸′𝐸1
ℎ𝑖𝑖ℎ

𝐸′1
𝑙𝑙𝑙

=
∫ 𝑓2�𝐸2,𝐸′, 𝜇�𝑑𝐸′𝐸′2
𝐸1
𝑙𝑙𝑙

∫ 𝑓2�𝐸2,𝐸′, 𝜇�𝑑𝐸′𝐸′2
ℎ𝑖𝑖ℎ

𝐸′2
𝑙𝑙𝑙

.

(Error!
Bookmark

not
defined.8)

41

AMPX supports all of the interpolation laws and uses them as given in the evaluation. However,
internally ,an interpolation value of 22 is used, and additional mesh points are added if needed to describe
the distribution as given by the evaluator. The unit-based approach is sensitive to small tails in the
distribution since the exit energy range must be well defined. AMPX provides a method that cuts lower or
upper exit energies from a distribution if these energies do not substantially contribute to the total integral
of the distribution. To determine the new lower exit energy, the integral is calculated first:

𝐼𝑡𝑙𝑡 = ∫ 𝑓(𝐸,𝐸′,𝜇)𝐸′ℎ𝑖𝑖ℎ
𝐸′𝑙𝑙𝑙

𝑑𝐸′,

(Error!
Bookmark

not
defined.9)

and then the partial integral

𝐼𝑝𝑝𝑝𝑡 = ∫ 𝑓(𝐸,𝐸′, 𝜇)𝐸′ℎ𝑖𝑖ℎ
𝐸′𝑙𝑙𝑙
𝑛𝑛𝑙 𝑑𝐸′.

(Error!
Bookmark

not
defined.10)

If ��𝐼𝑡𝑙𝑡 −𝐼𝑝𝑝𝑝𝑡�
𝐼𝑡𝑙𝑡

� is smaller than a user-defined precision, the energy range is changed to the new lower exit
energy. A similar procedure is performed for the upper exit-energy limit.

In addition, the unit-based interpolation is slightly modified if the distribution has upscatter terms in order
to preserve the correct upscatter in the interpolated panel. Two units are being used—one extending from
[𝐸′𝑙𝑙𝑙 ,𝐸], and the other from �𝐸,𝐸′ℎ𝑖𝑖ℎ�, where E is the incident energy. Depending on the distribution
and the distance between the provided incident energies, the shape of the exit energy distribution can
change, as seen in Fig. 18.

42

Fig. 18. Difference between using unit-based over the full range or using unit-based between low exit energy
and incident energy and incident energy and high incident energy.

5.1.5 Comparison

It is frequently required to compare two values or distributions to determine whether additional data are
needed to accurately describe the distribution. Comparison is always made by interpolating a new
distribution at the desired energy or angle. While this may be computationally intensive, it provides more
precise results. To ensure that two distributions are equal, one steps over a union mesh of energy or angle
and interpolates two auxiliary distributions, one from each of the two distributions, to be compared at
each union mesh point. These two distributions can now be directly compared. If any of the distributions
has a discontinuity, the comparison is made first with the left value then with the right value.

The easiest comparison is for 1-D data or angular distributions. As outlined above, values from each point
on the union grid are interpolated from both distributions. If any absolute value of those two values is
larger than a user-defined cut-off, the two values are assumed to be the same if the relative difference is
smaller than a user-defined precision. Otherwise, the absolute difference is compared, which in effect
assumes that the two values are zero. The cut-off value ensures that very small values are treated as zero
and for example avoids adding unnecessary points to the mesh if comparison is used in connection with a
halving scheme. Care needs to be taken so that the cut-off value does not eliminate major features of the
distribution. A good choice is a value which, integrated over all energies and/or angles, does not change
the total integral more than a user-defined precision. This is the default value chosen in AMPX, but it can
be overridden by the user. Two 1-D data or angular distributions are equal within in a user-specified
precision if all values on the union grid satisfy the above comparison.

Two exit energy distributions are compared by comparing the angular distributions interpolated on the
union grid. Two incident energy distributions are compared by comparing the exit energy distributions on
a refined union mesh.

E

E2

E2

f

Secondary
Energy E=

E’

Unit based
full range

43

Comparison is often used to generate a suitable mesh in incident and exit energy and angle. This
procedure works well for exit energy and angles, but it can lead to an extremely fine mesh for the incident
energies. Therefore, if an incident energy mesh needs to be refined, then only the exit energy range is
compared. If the exit energy range can be interpolated via unit-based interpolation, then the mesh is
assumed to be dense enough. In order to thin an incident energy mesh, the full distribution is always used
for the comparison. This procedure relies on a good initial grid for the incident energy being given, which
is true if the grid is supplied by the evaluator.

5.1.6 Conversion for kinematic data

Angular distributions for a given exit energy can be given in Legendre or cosine moments or in tabulated
form. Conversion functions to convert between these formats are provided in AMPX. Conversion
between cosine and Legendre coefficient is a simple transformation of the coefficients: the order does not
change. Conversion to tabulated form is always based on Legendre moments. An initial equidistant cosine
grid between -1 and 1 is selected on which the Legendre moments are expanded. The grid is refined using
the halving scheme described above.

The final kinematic distributions are desired in the laboratory system. Therefore a conversion from the
center-of-mass system is often needed. Conversion is only performed for tabulated double-differential
formats; a conversion to tabulated format is performed before the conversion if needed.

For elastic and discrete-inelastic incident neutron reactions, there is only one exit energy in the center-of-
mass system for a given incident energy, and in the laboratory system, each exit energy has exactly one
exit angle. To convert the kinematic data for a given incident energy, AMPX generates an initial grid of
exit energies in the laboratory system by stepping over equidistant points in the angle distribution in the
center-of-mass system. The grid is then further refined by a halving scheme used on the center-of-mass
angle until the exit and angle distribution in the laboratory system can be reproduced to a user-defined
precision. For some nuclides and reactions, two different exit energies in the laboratory system can have
the same exit angle. In these cases, the Jacobian that transforms the value of the distribution from center-
of-mass to laboratory system can be infinite, and the above halving system does not work correctly when
close to the discontinuity. In these cases, the angle in the center-of-mass system where the discontinuity
occurs is determined, and two laboratory angles on either side of the value are chosen so that the Jacobian
can still be calculated within numerical precision. The halving scheme is then employed on the center-of-
mass angles below the lower of the two angles and above the higher of the two angles. In addition, a
much denser initial grid is chosen for the lower angular region. If the final format is moments instead of
tabulated, the Jacobian for the transformation from center-of-mass to laboratory system is not required for
the angle, as integration is performed over the whole angle range. Therefore, the Jacobian to convert
between center-of-mass and laboratory system angle is not applied, and the distribution is immediately
converted to cosine moments. The Jacobian to convert between center-of-mass and laboratory system exit
energies is still applied. If the distribution is desired in tabulated form, both Jacobians are applied.

The incident energy grid used in the center-of-mass system can often be coarser than is required in the
laboratory system, especially for threshold reactions. Additional incident energies in the laboratory
system are calculated by interpolating a distribution for the desired incident energy from the center-of-
mass kinematic data and then converting the distribution to the laboratory system as described above. The
additional incident energies are chosen so that the exit energy range can be determined via unit-based
interpolation. The exit energy distributions themselves are not compared. The laboratory incident energy
grid is thinned if possible, but this time it is based on a full comparison of the exit energy and angle
distribution.

44

The procedure to convert other reactions from center-of-lab to the laboratory system is similar to the
conversion for elastic incident neutron reactions except that there can be more than one exit angle for a
given exit energy. In this case, the distribution in the center-of-mass and laboratory system will always be
tabulated; there is no special treatment if the final desired format is an angular distribution in moments.

If the kinematic data for a threshold reaction are given in the center-of-mass system, ENDF sometimes
contains exit energy distributions at incident energy slightly below or at the threshold. Conversion of
these panels to the laboratory system is numerically unstable. Therefore, only incident energies slightly
above the threshold are converted. In order to preserve the distribution, additional incident energies above
the threshold are inserted into the distribution in the center-of-mass system before conversion to the lab
system.

5.2 GROUP-AVERAGED DATA

Group-averaged data used by AMPX are categorized in three broad groups: (1) 1-D cross section data,
which includes f-factors and subgroup data, (2) scattering matrices and (3) group-averaged covariance
data. 1-D cross section data and scattering matrices are normally contained in a MG library. AMPX and
SCALE share a C++ resource that keeps all MG data in memory and provides classes to access the data.

An integral over one set of 1-D data can always be calculated analytically since the interpolation is
known. AMPX library functions provide methods for this simple integral.

The two point-wise data structures described above can be converted to group-averaged data using
AMPX library functions. In the case of 1-D cross section data, a point-wise cross section TAB1 object is
multiplied with a flux, which is also given as a TAB1 object, and then it is integrated over all energies in
a given group:

1

∫ 𝜑(𝐸)𝑑𝐸𝐸2
𝐸1

� 𝜎(𝐸)𝑦(𝐸)𝜑(𝐸)

𝐸2

𝐸1

𝑑𝐸

(Error!
Bookmark

not
defined.11)

where 𝜎(𝐸) is the cross section and 𝜑(𝐸) is the flux. The yield 𝑦(𝐸) is only different from 1 if fission
yields are calculated. This integral can be solved numerically if the two distributions use linear
interpolation.

Scattering matrices are calculated for a given incident energy group and exit energy group, and they are
always in Legendre moments. Please note that AMPX includes a (2𝑙 + 1) factor for each matrix, where 𝑙
is the order of the Legendre moment. Assuming the incident energy group 𝑖 has boundaries ⌊𝐸1,𝐸2⌋ and
the exit energy group 𝑗 has boundaries ⌊𝐸′1,𝐸′2⌋, the scattering matrix element at [𝑖, 𝑗] for Legendre
moment 𝑙 is calculated as:

1

∫ 𝜑(𝐸)𝑑𝐸𝐸2
𝐸1

∫ 𝑑𝐸𝑦(𝐸)𝜎(𝐸)𝜑(𝐸)∫ 𝑓𝑙
𝐸′2
𝐸′1

𝐸2
𝐸1

� 𝐸,𝐸′� 𝑑𝐸′,
(Error!

Bookmark
not

defined.12)

where 𝜎(𝐸) is the cross section, 𝜑(𝐸) is the flux, and 𝑓𝑙(𝐸,𝐸′) is the exit energy distribution at incident
energy E for the 𝑙th Legendre order. The yield 𝑦(𝐸) is only different from 1 if fission yield matrices are
calculated. The inner integral at a given energy E is calculated using unit-based interpolation. Assuming
the desired incident energy 𝐸𝑚lies between two incident energies present in the distribution— 𝑓𝑙(𝐸1,𝐸′)

45

and 𝑓𝑙(𝐸2,𝐸′) the exit energy range is calculated at 𝐸𝑚 using Eqs. (1) and (2), from which the

unit-based exit group boundaries and are calculated in the intermediate

panel. From this the corresponding x values can be calculated, as well as the integral boundaries in the
two outer distributions. The integrals for the two outer distributions are then calculated, and a value at
𝐸𝑚is calculated by linear interpolation of the integrals. The outer integral is performed for all cosine
orders at the same time using a fourth order Runge-Kutta method with adaptive step size [27], except
when the angular distribution is discrete and the integral can be calculated analytically.

5.3 PROBABILITY DATA

For CE libraries, the kinematic data are needed in marginal (with respect to angle) and conditional (with
respect to exit energy) cumulative probability functions. In the case of elastic and discrete inelastic
reactions, the conversion is straightforward, as there is only one possible exit energy for a given exit
angle. Thus the marginal cumulative probability function is simply the normalized angular distribution.
For each angle, the conditional cumulative probability function has one value.

For other reactions, the code first determines an angular mesh for each incident energy that is dense
enough so that the angular distribution for each exit energy can be represented on that mesh. On that
incident energy-dependent angle mesh, integrate 𝑓(𝐸,𝐸′, 𝜇) is integrated over all 𝐸′ values. The integral
of this function in angle is the yield. This function, normalized so that the integral is 1, is the cumulative
distribution in angle for the given incident energy. The cumulative distribution function is divided into a
user-defined number of equiprobable bins, usually 32. If the distribution function can be described with
less than the user-defined number of bins that are not equiprobable, then that grid is used instead to
conserve disk space. For each bin, the conditional cumulative probability distribution for the exit energies
is determined and saved.

46

6. NOTES ON SOME OF THE MODULES

Some modules in AMPX are shared with SCALE. Detailed description for these modules can be found in
the SCALE6 manual [12]. The shared modules are: AJAX, AIM, CADILLAC, COGNAC, LAVA, ICE,
PALEALE, MALOCS and RADE.

The functionality of some of the key modules used to generate MG and CE libraries are described below.

6.1 POLIDENT

The module POLIDENT is used to generate point-wise cross section data at 0 K. A more detailed
description of the module can be found in the separate POLIDENT manual [25]. The most complicated
procedure performed by POLIDENT is the mesh generation in the resolved resonance range, where the
cross section data can vary rapidly as a function of energy. Consequently, the cross section function can
be extremely dependent on the energy grid. If certain energy values or grid points are omitted, the
structure of the resonances may not be represented correctly during reconstruction from the resonance
parameters. Historically, energy-mesh-generation schemes begin with a very coarse grid, and points are
added to the coarse grid using the halving scheme described above. Based on experience, this halving
scheme, coupled with a coarse initial energy grid, can lead to inadequate representation of the resonance
structure particular near inflection points. In an effort to avoid potential problems associated with the
halving scheme, POLIDENT uses an adaptive mesh scheme largely based on a very fine energy mesh that
is subsequently collapsed to an auxiliary structure using a user-defined convergence tolerance. In the fine
mesh generation, a significant amount of effort is devoted to ensure that the detailed resonance structure
is represented faithfully. Due to the very large number of fine grid points, the steps are only performed for
slices of the whole resolved resonance energy range. The procedure is outlined below:

1. Within a given slice, determine the level spacing <D> and mean neutron-line width <Γn>, and

calculate an initial step size of . If there are no resonances in the slice, at least 10

steps are required over the interval, and the minimal initial step size is 0.01. A slice starts with a
width of 10eV but is extended in 10eV increments until it contains at least one resonance. This allows
for handling isotopes with resolved resonance ranges that extend to very high energies.

2. Calculate the absorption, capture, fission, scattering and total cross section on the initial grid
determined in step 1 using the appropriate resonance formalism on the grid generated in step 1. This
is the initial fine grid mesh.

3. Numerically calculate the first and second derivative on the fine grid for total, capture, and fission.
On a new auxiliary grid, add maxima and minima, defined by a sign change in the first derivative and
inflection points, and defined by a sign change in the second derivative. In addition, add resonance
energies to the auxiliary grid.

4. Add points to the fine grid between the inflection and maxima points. The number of points, N, added
between inflection point Ei and maxima Em is based on the following empirical criteria:

47

(Error!

Bookmark
not

defined.13)

1. Using a halving scheme, add more points to the fine mesh until all cross section data can be
interpolated linearly.

2. Collapse the fine grid to the user grid. The user grid starts with all the critical points on the auxiliary
grid. Then add enough points from the fine grid so that all cross section values on the fine grid can be
linearly interpolated from points on the user grid within a user-specified precision.

After the mesh is determined, the cross section is calculated for each mesh energy using the resonance
formalism given by the evaluator.

In the unresolved resonance range, the resonance self-shielding must be handled on a statistical basis, and
the resonance parameters are given as averaged values for a given energy range. Only the single-level
Breit-Wigner formalism is currently allowed in ENDF.

Resonances fit into families divided according to the angular momentum (l-value) of the nucleus and the
angular momentum of the resonance (j-state). The unresolved resonance data in an ENDF/B evaluation
are statistical parameters derived from the resonances in each family that can be resolved. These resolved
resonances statistically predict how the resonances are spaced in the particular family and also the
characteristics of the resonances (e.g., the relative size of the fission or elastic scattering component of the
resonance). POLIDENT uses a method developed by R. N. Hwang at ANL for calculating unresolved
cross sections as a function of energy [28]. In the unresolved resonance region, the resonance parameters
are provided for the SLBW formalism, and the resonance widths are distributed according to a chi-
squared distribution with a specified number of degrees of freedom. Flux weighted cross section values
can be calculated over an evaluator-specified energy interval using the unresolved resonance parameters.
In the averaging process, Hwang’s method makes use of the narrow resonance (NR) approximation, and
the resulting expressions for the average cross section values can be expressed in terms of fluctuation
integrals that are also defined in terms of the Doppler broadening ψ and χ resonance line-shape functions.
Despite the simplifications from the NR approximation, the resulting expressions are quite complicated
and involve integration of the resonance widths over the evaluator-specified chi-square distributions.
Hwang’s method makes use of special Gaussian-like quadratures that permit integration over the
probability distributions and the ultimate calculation of averaged point cross sections as a function of
energy. These averaged point value curves are very smooth functions in energy, and no attempt is made to
actually determine the extreme variation in the cross sections that appear in the real cross sections.

48

6.2 TGEL

The module recalculates redundant cross section data from the partial cross section values. Great care
needs to be taken at discontinuities, which frequently arise at the transition between resolved and
unresolved resonance range. A detailed description of the method used to add two point-wise data vectors
is given in the POLIDENT manual [25]. The functions used are in the ampx90lib library and are general
enough to add, subtract, divide, and multiply point-wise data.

The redundant cross sections should be calculated before the data are used in transport calculations. Note
that, in contrast to the NJOY RECONR module [29], POLIDENT does not reconstruct redundant cross
sections. The module TGEL has to be run before AMPX-generated redundant point data can be compared
to NJOY-generated point data.

6.3 Y12

The ENDF formatted data files contain scattering matrix information for many reactions. To keep the
actual ENDF tape brief, a variety of formats is used. The module Y12 converts all formats into a unified
kinematics format suitable for use in other AMPX modules. The module Y12 produces scattering
matrices where the angular distribution is either given in Legendre moments, cosine moments, or
tabulated form. The distribution of exit energy and angle is always given in the laboratory system. Data
from Files 3, 4, 5, 6, 7, 12, 13, 14, 15, 23, and 27 are processed. In the case of thermal neutron scattering
data (File 7) and incident gamma data (Files 23, 26, and 27) Y12 also generates point-wise 1-D cross
section data. For all other cases, point-wise 1-D cross section data are generated in module POLIDENT.

6.3.1 Processing of ENDF Tapes

ENDF data are read into intermediate objects before further processing. This shields the processing
methods from reading the ENDF formatted files. Each reaction with kinematic data is encapsulated in a
KinematicReaction object, which stores reaction specific data such as incident and exit particle,
temperature, and Q value, and a list of KinematicYield objects. KinematicYield objects encapsulate the
kinematic data contained in one or more KinematicData object and yield information. The yield
information contained in a YieldData object is a list of zero or more 1-D cross section data that need to be
summed and multiplied with the kinematic data to give the full desired kinematic data. Kinematic data
can sometimes be separated into angular distribution and exit energy distribution, so the KinematicData
object has a flag indicating whether the exit energy distribution, the angular distribution, or the full double
differential distribution is given. If the kinematic data are already given in double differential form, either
tabulated or as Legendre moment, they are stored as one or more KinematicBlock objects in the
KinematicData object. In some cases the data are given in a form that needs further processing to convert
it to double-differential form, and for these cases, special classes are given in the KinematicData object,
as outlined below. Y12 first converts these special objects into double-differential format and stores them
in a KinematicBlock object. All KinematicBlock data of the same type are then added together. This is
done by creating an initial union grid of all incident energies on which each value of the distributions to
be summed is interpolated and then added together. Additional points are added by using the halving
scheme. If exit energy and angle distribution are given separately, they are combined into one
KinematicBlock object. As a final step, the kinematic data are multiplied by the yield data.

Before returning, Y12 converts any data given in the center-of-mass system into the laboratory system
and converts to Legendre, cosine, or tabulated depending on the user’s selection.

49

6.3.1.1 Energy distributions

If angular and exit energy distribution are given separately, the energy distribution can often be given as a
function. ENDF currently allows two evaporation spectra, as well as a Maxwellian Fission spectrum, a
Watt spectrum, and a Madland-Nix Fission spectrum. A special class takes parameters for these functions
as read from the ENDF formatted file. Y12 translates the functions into a KinematicBlock object. The
appropriate grids for incident and exit energies are constructed via a halving scheme as described above.

6.3.1.2 Kalbach-Mann formalism

If the angular distribution are given in the Kalbach-Mann formalism [30,31], the distribution for a given
incident and exit energy is given in terms of parameters r, a and f0. The parameter r is a pre-compound
fraction given by the evaluator, and the parameter a is a simple parameterized function that depends
mostly on the center-of-mass emission energy. The parameter f0 is the integral over the angular
distribution. The parameter a is either given by the evaluator, or it can be calculated. The distribution is
always given in the center-of-mass system. The initial Kalbach-Mann parameters are stored in a
KinematicBlock object using the zero to second Legendre order to store f0, r and a. The advantage of
using a KinematicBlock object is that existing interpolation routines can be used to interpolate values for
f0, r and a at any desired incident and exit energy. Y12 converts the parameters to a double differential
distribution in the center-of-mass system. The incident energy grid is the union grid of the incident
energies given by the evaluator for the parameters and for the yield data. Additional energies are added
close to the threshold energy.

6.3.1.3 N-Body Phase-space distribution

For N-Body reactions, the phase space distribution is sometimes used in ENDF evaluations. A
PhaseSpace object stores the parameters, APSX for the total mass of the NPSX number of particles
treated by the distribution. Y12 then calculates double-differential cross section from these parameters
and determines a suitable grid.

6.3.1.4 Coherent elastic thermal neutron scattering

For some crystal structures such as graphite, neutrons can scatter without loss of energy at the Bragg
edges. For each incident energy, one or more discrete exit angles may exist. File 7 lists the angles and a
value proportional to the structure factors as a function of incident energy for different temperatures.
These data are encapsulated into a CoherentElastic object which is processed by Y12. The incident energy
grid is determined by first generating the 1-D cross section on a grid dense enough to interpolate linearly.
The kinematic data are then generated on the same grid. The angles are marked as discrete.

6.3.1.5 Incoherent elastic thermal neutron scattering

Incoherent elastic scattering is described by the following formula:

𝜎𝑏
4𝜋
𝑒−2𝐸𝐸(𝑇)(1− 𝜇)𝛿(𝐸 − 𝐸′),

(Error!
Bookmark

not
defined.14)

where 𝜎𝑏is the characteristic bound cross section and W’ Debye-Waller integral divided by the atomic
mass, both of which are given by the evaluator. The two values are stored in an IncoherentElastic object
for processing by Y12. Y12 first calculates the 1-D cross section and determines a grid dense enough to

50

linearly interpolate in the cross section data. The kinematic data are then generated on the same incident
energy grid.

6.3.1.6 Incoherent inelastic thermal neutron scattering

The preponderance of ENDF/B thermal scattering data use this data form. For most materials, it is the
only form needed, and data are given as a list of S(α,β) data, with 𝛼 = �𝐸′ + 𝐸 − 2𝜇√𝐸𝐸′�/𝐴0𝑘𝑘 as the
momentum transfer and 𝛽 = (𝐸′ − 𝐸)/𝑘𝑘 as the energy transfer. The variable T denotes temperature, k
is Boltzman’s constant, and A0 is the mass of the principle scattering atom in the material. A SalphaBeta
object is created from the ENDF data for processing in Y12. In addition, the evaluator gives an upper
incident energy 𝐸𝑚𝑝𝑥 above which the of S(α,β) data are not to be used, and treatment switches to a short
collision time approximation, where S(α,β) is given as:

𝑆𝑆𝑆𝑇(𝛼,𝛽) =
𝑒𝑥𝑝�−�𝛼−

|𝛽|2�𝑇
4𝛼𝑇𝑛𝑒𝑒

−|𝛽|
2 �

�4𝜋𝜋
𝑇𝑛𝑒𝑒
𝑇

,

(Error!
Bookmark

not
defined.15)

and the double differential cross section is calculated as:

𝜎′𝑏
4𝜋𝑘𝑘

�𝐸′
𝐸
𝑒−𝛽 2⁄ 𝑆(𝛼,𝛽)

(Error!
Bookmark

not
defined.16)

from the S(α,β) data, where 𝜎′𝑏 and 𝑘𝑒𝑒𝑒 are given in the ENDF evaluation. Y12 uses the S(α,β) given by
the evaluator below 𝐸𝑚𝑝𝑥, above which the short collision time approximation is used. For incident
energies below 𝐸𝑚𝑝𝑥 and exit energies and angles for which the 𝛽 is outside the range given by the
evaluator, the short collision time approximation is used. If 𝛼 is lower than the range given by the
evaluator, the lowest value given by the evaluator is used. If 𝛼 is higher than the range given by the
evaluator, the short collision time approximation is used. For large negative values of 𝛽, the formulas for
the cross section become numerically unstable due to the exponent. Therefore, for 𝛽 < −1200, the
double differential cross section value is set to zero. For a given incident energy, the lower range of the
exit energy is set to 10−9𝑒𝑒, and the upper exit energy is set so that the integral over the exit angle is
zero. For the exit energies and angles, the halving scheme is used in conjunction with a starting grid. The
lower and upper exit energies are then eliminated if the relative difference in the integral of exit energy
and angle does not change more than a user specified precision. For the incident energies, first a grid is
generated in which energy points are spaced by 𝐸𝑖+1 = 𝐸𝑖

𝑙𝑙(10)
20

 in the desired energy range. Then a
sufficient number of points is added to interpolate linearly in the 1-D cross section calculated as the
integral over exit energy and angle. Finally, the incident energy grid is thinned so that cross section can
by linearly interpolated and the exit energy range can be determined by unit-based interpolation.

For nuclides that do not have evaluator-provided S(α,β) data, the free gas approximation is used. In the
case of CE transport calculations, the transport codes generate the free gas data during transport. For the
MG calculations, the free gas data are provided on the library. Y12 uses the same procedure for
calculating the free gas kinematic data using the expression

1
√4𝜋𝛼

𝑒𝑥𝑒 �−
𝛼2 + 𝛽2

4𝛼 �
(Error!

Bookmark
not

51

defined.17)

to calculate a value for S(α,β).

6.3.1.7 Incoherent Scattering for incident gammas

The cross section for incoherent scattering of incident gammas is given by

𝑑𝜎�𝐸,𝐸′,𝜇�
𝑑𝜇

= 𝑆(𝑞) 𝑑𝜎𝐾𝐾�𝐸,𝐸′,𝜇�
𝑑𝜇

,

(Error!
Bookmark

not
defined.18)

where 𝑆(𝑞) is the incoherent scattering cross section listed in the ENDF evaluation as a function of the
momentum of the recoil electron (in inverse angstrom units):

𝑞 = 𝐸
𝜋
�1 + �𝜋′

𝜋
�
2
− 2𝜇 �𝜋′

𝜋
��
1 2⁄

,

(Error!
Bookmark

not
defined.19)

where

𝛼 = 𝐸
𝑚0𝑐2

,𝛼′ = 𝐸′
𝑚0𝑐2

 ,

𝑚0 rest mass of the electron,

c speed of light,

and

𝑑𝜎𝐾𝐾(𝐸,𝐸′, 𝜇)
𝑑𝜇

=
3𝜎𝑇𝑇

16 �
𝐸′
𝐸�

2

�
𝐸
𝐸′

+
𝐸′
𝐸

+ 𝜇2 − 1�𝑑Ω

(Error!
Bookmark

not
defined.20)

is the Klein-Nishina equation [32] where solid angle can be converted to the cosine via:

𝑑Ω = −2 sin𝜃𝑑Θ = −2𝑑(cos𝜃) = −2𝑑𝜇,

(Error!
Bookmark

not
defined.21)

and 𝜎𝑇𝑇 = 0.66524485 is the classical Thompson cross section for the electron. This formula can be
directly used if generating data in tabulated form for use in CE libraries, as the first integral is over the
cosine. Therefore, if tabulated data are requested, Y12 calculates the double differential cross section
from Eq. (18). However, if calculating cosine moments or Legendre orders, the first integral is over exit
energy. Therefore, a Jacobian must be applied to convert to an integral over exit energy. If the photon
energy is expressed in electron rest mass units (i.e. 𝑒 = 𝐸𝛾 0.5110034⁄), where 𝐸𝛾 is given in units of
MeV, then energy and momentum conservation leads to

52

𝑒′
𝑒

= 1
1+𝑒(1−𝜇),

(Error!
Bookmark

not
defined.22)

from which the Jacobian is derived as:

𝑑𝜇 = 𝑑𝑒′
𝑒′2

.

(Error!
Bookmark

not
defined.23)

If the user desires cosine or Legendre moments, then this transformation is applied to Eq. (18) before the
cross section data are converted to cosine moments.

The incident energy grid is determined by the energy grid used for the cross section data as given by the
evaluator. The exit energy grid for a given incident energy is determined by first adding 100 equally
spaced exit energies in the energetically allowed range. This grid is then refined by a halving scheme and
finally thinned of exit energy points not needed to describe the distribution. Since there is only one angle
per exit energy, no grid is necessary for the angular distribution.

6.3.1.8 Coherent Scattering for incident gammas

The cross section for incoherent scattering of incident gammas is given by:

𝑑𝜎�𝐸,𝐸′,𝜇�
𝑑𝜇

= 𝛿(𝐸 − 𝐸′)𝜋𝑟02(1 + 𝜇2){[𝐹(𝑞) + 𝐹′(𝐸)]2 + 𝐹′′(𝐸)2},

(Error!
Bookmark

not
defined.24)

where:

𝑞 = 𝛼[2(1 − 𝜇)]1 2⁄ is the recoil moment of the atom (in inverse angstroms),

𝛼 = 𝐸
𝑚0𝑐

,

𝑚0 rest mass of the electron,

c speed of light, and

𝑟0 = 𝑒2
𝑚0𝑐2
� classical radius of the electron.

The remaining quantities are listed in the ENDF.

The incident energy grid is determined by the energy grid used for the cross section data as given by the
evaluator. The angular distribution is determined by first adding 50 equally angle cosines over the full
range. This grid is then refined by a halving scheme and is finally thinned.

53

6.3.1.9 Pair production for incident gammas

Since there are no kinematic data for pair production given in ENDF, an isotropic distribution is assumed
with fixed exit energy of 511.0034 keV for all incident energies. The range of the incident energies is
determined by the range of the cross section data given for pair production.

6.3.1.10 Photon production for incident neutrons

Photon production kinematic data can be given in many of the formats discussed above. These kinematic
data are processed as discussed above. In addition, photon multiplicity data can be given as either
multiplicities or as transition probability arrays. In both cases it is assumed that the angular dependence
and energy dependence are separable. The use of transition arrays is primarily of use in discrete level
inelastic scattering. Here the situation is characterized by having a neutron interacting with a nucleus that
can be excited to one of many excited quantum states. A nucleus in an excited state will decay to the
ground state by emitting photons or other particles, and it can conceptually transfer to all of the energy
levels below the initial excited level. When the nucleus transfers between levels, energy must be
conserved. Therefore, particles are expelled from the nucleus whose energies must be the difference
between the energies of the levels. If a transition array is used, the energy levels of the decay are
explicitly given, and Y12 will reconstruct the decay all the way to the ground state. If multiplicity data are
given, Y12 assumes that the evaluator already provided the decay to the ground state.

Photon production data in ENDF can be given in units of cross section (absolute) or relative to the
incident neutron cross section. Like ENDF, Y12 normally assumes that the kinematic data are given
relative to the cross section. Since Y12 does not have access to the cross section data itself, it cannot
change the kinematic data from absolute to relative. In order to be consistent with the existing AMPX
code base, Y12 uses a modified reaction number to indicate that the kinematic data are given in units of
cross section.

6.4 JERGENS

The JERGENS module is used to generate the flux used to collapse point-wise data to MG format. A
variety of predefined functions are available; see JERGENS input instructions for more details.
JERGENS cannot construct a flux based on existing data, like the total cross section of a given material.
If an arbitrary function based on existing point-wise data is desired, a combination of ZEST and
FUNCCAL is likely needed.

6.5 PURM AND PURM_UP

Because of the statistical nature of the unresolved resonance parameters, probability tables can be used to
provide cross section probability distribution functions for energy ranges at specific temperatures. The
module PURM in AMPX uses an approach described in detail in Dunn 2002 [33] which is different from
the ladder approach used in NJOY. PURM generates pairs of resonance or levels surrounding the energy
of reference given in the ENDF evaluated data files. For each (l,J) value, pairs of resonance are sampled
from the Wigner distribution with the level density given for this pair in ENDF. Once the distribution of
energy levels is sampled, the resonance width is sampled from a Chi-square distribution for each
resonance. The number of degrees of freedom is given in ENDF. PURM uses the Δ3 statistic test
developed by Dyson and Mehta [34,35] to determine the appropriate number of pairs of resonances. Once
all the parameters are sampled, the single-level Breit-Wigner formalism is used to calculate the total,
fission, capture, and elastic cross section data at all desired temperatures. The process is repeated a
sufficient number of times to generate statistical information of the cross section data. Since cross section
data cannot be negative, and since an elastic cross section of zero causes the transport codes to abort,

54

PURM rejects any sample that generates negative cross sections or zero elastic cross section values.
PURM generates probability tables for each desired energy and temperatures. The cross section
boundaries in the table are chosen so that the probability is equiprobable in the total cross section.

As in the resolved range, the ENDF format allows the evaluator to give cross section data in point-wise
format in File 3 that are to be combined with the cross section calculated from the unresolved resonance
parameters. However, due to the statistical nature, two different formats are allowed, as distinguished by a
value of zero or one for a flag called LSSF. If LSSF is zero, the cross section of File 3 is to be added to
File 2 to form the total cross section data. If LSSF is one, File 2 unresolved resonance parameters are to
be used to compute a slowly varying self-shielding factor that may be applied to the rapidly varying File 3
values. In either case, two different energy grids may be used for File 2 and File 3 data. Since the
generation of a probability table for a given energy is a computationally intensive step, PURM only
generates probability tables at the energies of reference used for the unresolved resonance data in File 2.
However, since the probability tables are generated on equiprobable bins, probability tables at other
desired energies can easily be interpolated. A second module PURM_UP is used to generate the
probability tables on the union grid of File 2 and 3 data. In PURM_UP, the point-wise cross section from
File 3 is retrieved and Doppler broadened to the desired temperatures. If LSSF is one, the probability
tables generated in module PURM are interpolated on the union grid and multiplied by the Doppler-
broadened File 3 cross section value. If LSSF is zero, the probability tables without the File 3 contribution
are interpolated on the union grid, and the Doppler-broadened File 3 cross section data are added. Since
the File 3 data do not contain any statistical variations, the above operations will not change any
distributions described by the probability tables except for a constant factor or a constant value.

6.6 PRUDE

The module PRUDE is used to calculate the temperature and background-dependent cross section data in
the unresolved resonance range based on methods developed by R. N. Hwang at ANL [36] as outlined in
Sect. 2.2.4. As in the case of PURM, the cross section data given in File 2 are either added or multiplied
with the temperature- and background-dependent cross section data.

6.7 X10

The module X10 is used to generate the group-wise 1-D data and scattering matrices. The module does
not read ENDF/B data files; instead, it takes the following three data types:

1. a file containing the point-wise 1-D data at all desired temperatures,
2. a file containing a smooth weighting function, and
3. a kinematics file generated by Y12 that contains the data in cosine moment form.

X10 does not include physics. The physics associated with a particular type of scattering are all contained
in the kinematics file produced by Y12. Therefore, X10 can use the same integration routines whether
neutron matrices, gamma matrices, or gamma production matrices are produced. The integration routines
used are described in Sect. 5.2. In addition to the 1-D cross section data and kinematic data given in the
ENDF evaluation, X10 generates several specific reactions for use in the transport codes.

For fissionable materials, X10 will produce several specialized scattering matrices as listed in Sect. 7.3.2.

55

6.8 FABULOUS

The module FABULOUS computes data needed for resonance self-shielding of MG cross sections with
the Bondarenko method [37]. The Bondarenko method represents self-shielded cross sections in terms of
temperature and a background cross section parameter σ0 which indicates the degree of self-shielding:

, (25)

where ()
, 0(,)j

x g Tσ σ is the self-shielded MG cross section in group g for reaction type x and nuclide j,
corresponding to background cross section σ0 and temperature T. The Doppler broadened CE cross
section data () (,)j

x E Tσ appearing in Eq. (25) is processed as described in previous sections, and the
weighting function 0(, ,)E Tϕ σ approximates the fine-structure flux spectrum for a mixture containing
resonance nuclide j at varying dilutions as defined by the value of σ0. Bondarenko shielding factors, also
known as f-factors, are computed from the expression

()
, 0()

, 0 ()
,

(,)
(,)

(,)

j
x gj

x g j
x g ref ref

T
f T

T
σ σ

σ
σ ϕ

= ,

(Error!
Bookmark

not
defined.26)

where the denominator corresponds to an arbitrary reference cross section evaluated with a specified
reference flux energy spectrum and temperature. Often the reference spectrum is characteristic of a fission
source in a moderating medium containing an infinitely dilute concentration of the resonance material.
However, rather than a generic infinitely dilute spectrum, it may be advantageous to use a more tailored
reference spectrum for some applications.

To use the library Bondarenko data to obtain shielded cross sections for transport calculations, the value
of σ0 is computed for the system (e.g., lattice) of interest, and the corresponding factor f(σ0 ,T) is
interpolated from tabulated values on the library. The shielded cross section is obtained by multiplying
the shielding factor by the reference (i.e., infinitely dilute) cross section.

The salient feature of the Bondarenko method is that the flux weighting spectrum is parameterized by a
function that depends only on the background cross section and temperature, which allows Eqs. (25) and
(26) to be evaluated for a specified set of background cross sections and temperatures that span the range
of self-shielding conditions. For example, the background cross sections used to produce the 238U
f-factors for ENDF/B-VII libraries in the SCALE system are

{ }6 10
0 0.01, 1.0, 10.0, 50.0, 100.0, 1000.0, 10000.0, 10 , 10σ = .

(Error!
Bookmark

not
defined.27)

Group-dependent f-factors vs. background cross sections and temperature, as well as the reference cross
section values, are included for each nuclide in the AMPX master library.

AMPX provides three methods to parameterize the flux for processing Bondarenko data: (1) analytical
approximation, (2) numerical solution of the slowing-down equation for an infinite homogeneous
medium, and (3) numerical solution for a heterogeneous unit cell in an infinite lattice. It is usually

56

desirable to use the analytical representation for the unresolved resonance range and higher energies,
while the numerical solutions are usually more accurate for the resolved resonance and thermal ranges.
Numerical solutions obtained with the homogeneous model are adequate for most resonance nuclides, but
the heterogeneous model may produce more accurate results for important nuclides in the fuel region of a
reactor lattice. Only the analytical method is provided in the AMPX distribution. The full AMPX/SCALE
distribution, along with the SCALE data directory, is needed for the remaining two methods.

The AMPX module FABULOUS computes Bondarenko factors with an analytical expression for flux
based on the narrow resonance (NR) and intermediate resonance (IR) approximations:

0
0 ()

0

()
(, ,)

(,)
ref

j
t

E
E T

E T
σ ϕ

ϕ σ
σ σ

=
+

(Error!
Bookmark

not
defined.28)

In this case Eq. (25) reduces to

()

()
() 0
, 0

()
0

(,) ()
dE

(,)(,) ()
dE

(,)

j
x ref

jg
j t

x g
ref

jg
t

E T E
E TT E
E T

σ ϕ
σ σσ σ ϕ
σ σ

+
=

+

∫

∫
.

(Error!
Bookmark

not
defined.29)

It can be seen that the limit for ()
, 0(,)j

x g refTσ σ →∞ is the value of the reference cross section weighted
with refϕ .

The integrals in Eq. (29) are solved using the Runge-Kutta method with adaptive step size [27].

As outlined above, there are two methods available in AMPX to calculate the cross section data in the
unresolved resonance range. If the module PRUDE is used to generate temperature and background cross
section dependent cross section, Eq. (29) is used. However, in the unresolved resonance range, values for
𝜎𝑥

(𝑗)(𝐸,𝑘) is substituted by 𝜎𝑥
(𝑗,𝑢𝑝𝑝)(𝐸,𝑘,𝜎𝑙) as calculated by PRUDE.

If the probability table is used, 𝜎𝑥,𝑝
(𝑗)(𝐸,𝑘) is the cross section for the band 𝑒 of the probability table for

reaction 𝑥 and nuclide 𝑗. The probability for a given band is given by 𝑃𝑝. In this case, FABULOUS
calculates 𝜎𝑥,𝑖

(𝑗)(𝜎0,𝑘) as

If the unresolved resonance range starts or ends within a group, the numerator and denominator each will
have two terms, one containing the sum over the probability table bands, and one using the integral with
the point-wise cross section data.

𝜎𝑥,𝑖
(𝑗)(𝜎0,𝑘) =

∫ ∑ 𝑃𝑝
𝜎𝑥,𝑝

(𝑗) (𝐸,𝑇)𝜑𝑝𝑛𝑒

𝜎𝑡,𝑝
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸𝑝𝑖

∫ ∑ 𝑃𝑝
𝜑𝑝𝑛𝑒

𝜎𝑡,𝑝
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸𝑝𝑖

.

.(Error!
Bookmark

not
defined.30)

57

The AMPX module IRFfactor obtains a parameterized CE flux spectrum using numerical solutions
computed with the CENTRM/PMC deterministic transport modules in SCALE [12]. These SCALE
modules CENTRM and PMC have application program interfaces (APIs) which are called directly from
IRFfactor. The PMC module evaluates Eq. (25) using a weight function calculated by CENTRM, a
deterministic transport solver that uses CE data. CENTRM determines a problem-specific energy mesh
based on cross section variations for materials in the problem, resulting in an energy grid of ~60,000–
100,000 points for the flux calculation. Either homogeneous or simple heterogeneous models can be used.

The point-wise flux (PW) for the homogeneous model is computed from the slowing-down equation for
an infinite-medium mixture containing resonance nuclide j mixed with hydrogen:

() 0 0

() ()

()

/
()

0 0 0
() () ()

'
(1)

',T ', T ', T
(,) (E,) '

,,
' '

j j
s

j

E
j

t
E E

dE
E E E

E T ET d
E E

α σ σσ
α
ϕ ϕσ σ ϕ σ σ

∞

−
+ = +∫ ∫

(Error!
Bookmark

not
defined.Error

! Bookmark
not

defined.31)

where

()1 jα− = the maximum fractional energy loss in an elastic collision with nuclide j,
()

()
0 ()

H
H

pj

N
N

σ σ= (the background cross section),

()H
pσ = the potential cross section for hydrogen,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.32)

and N(H), N(j) are number densities of hydrogen and nuclide j, respectively.

Note that the solution to Eq. (31) is parameterized in terms of σ0 and T as required by the Bondarenko
method. IRFfactor uses CENTRM to numerically solve Eq. (31) for a given resonance material, with the
specified sets of temperatures and background cross sections. The ratio N(H)/ N(j) in the CENTRM
homogeneous medium calculation is adjusted to give the desired background cross section using Eq. (32).
IRFfactor executes the PMC module to compute self-shielded MG cross sections by evaluating Eq. (25)
with the calculated CE flux at the corresponding (σ0,T). The module PMC also updates the elastic
scattering matrix, and the self-shielded removal cross section data are the diagonal elements of the elastic
scattering matrix for Legendre order zero. The shielded cross sections are converted into f-factors for the
library.

IRFfactor can also be used to compute heterogeneous shielding factors for resonance nuclide j contained
in a uniform lattice consisting of cylindrical fuel pins, surrounded by cladding, and contained in a
moderating material. In this case, CENTRM calculates the space-dependent flux in a unit cell using either
the discrete ordinates method for a 1-D Wigner-Seitz model or the method of characteristics for 2-D unit
cell model (i.e., cylindrical fuel pin in a rectangular moderator region). Although CENTRM can treat an
arbitrary mixture of resonance absorbers, IRFfactor by default neglects resonance interference effects and
represents the total cross sections by the potential scattering for all nuclides other than j. This
approximation allows Bondarenko data for each resonance material to be processed independently. For
self-shielding with the heterogeneous model, the following transport equation is solved to obtain the CE
angular flux spectrum for a given heterogeneous cell configuration:

58

() ()()

() ()

/ /
(j) () ()() (, ,) (,)

'
(1))

', ' ',
' ()

' (1 '

j mj
s

j m

E E
m m

p
m jE E

r T r
dE

E T E E T
EN d N r

E E

α ασ
α α

σϕ ϕ
≠−

  +  −  
∑∫ ∫ .

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.33)

The zone-averaged scalar flux (Z) (E)ϕ , which is obtained by integrating the CE angular flux over all
directions, is used as the weighting function to compute shielded MG cross sections. Cell parameters such
as fuel radius, pin pitch, moderator void fraction, and material concentrations (i.e., N(j) and N(m)) are varied
to obtain a range of heterogeneous self-shielding conditions for solving Eq. (33). The self-shielded cross
sections are assigned to the background cross section for the corresponding heterogeneous cell
configuration. Two options are provided to define the background cross section of the heterogeneous cell:
(1) the embedded self-shielding method (ESSM) described in [38], and (2) conventional equivalence
theory.

The ESSM calculates the background XS in group g for resonance nuclide j in zone Z from the expression
[38]:

(j) (Z)
a,g g(j)

0,g (Z)
g1

σ ϕ
σ

ϕ
=

−

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.34)

In Eq. (34), the variable (j)
a,gσ is the self-shielded group cross section weighted with the CE flux in zone Z,

and (Z)
gϕ is the MG flux for zone Z, which is calculated by solving the following one-group slowing-down

equation for the same heterogeneous cell:

(j) () () () () () ()
a, (r) (,)() () ()j m m m m m

g p g p
m m

N r N r r N rσ σ λ σ+
 ∇ ⋅Ω+ Ψ Ω = 
 

∑ ∑ ,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.35)

where ()mλ is the IR parameter discussed the next section.

The above one-group fixed source transport equation is solved independently for each group using
CENTRM. In order to obtain shielded cross sections with ESSM for a reactor lattice mixture, a similar
fixed source is solved (perhaps in 2-D or 3-D geometry); Eq. (34) is evaluated to obtain the background
cross section, and then the shielded cross section is interpolated from the tabulated values on the library.
The ESSM approach is used in the POLARIS [39] and MPACT [40] lattice physics codes

The other option for defining the background cross section of a heterogeneous cell is the conventional
method based on the IR approximation and equivalence theory [41], as implemented in the BONAMI
module of SCALE:

59

() (m) (m)

0 ()

m
p esc

m j
j

N

N

λ σ
σ ≠

+ Σ
=
∑

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.36)

where λ(m) is the IR parameter (discussed below) for nuclide m, and Σesc is the “escape” cross section. In
IRFfactor the escape cross section for the heterogeneous cell is computed from the expression

(1)
esc

A c−
Σ =



,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.37)

where c = Dancoff factor for the fuel,  = average chord length in the fuel zone, and A= Bell correction
factor. The techniques used to evaluate these parameters are discussed in the BONAMI section of
SCALE. In addition to BONAMI, several other codes employ Eq. (36) for Bondarenko self-shielding
calculations, although the expressions for the Dancoff and Bell factors may differ somewhat.

After all cell calculations are completed, shielded cross sections corresponding to the desired set of σ0
values on the library are obtained by interpolation from the shielded data computed for the various cell
background cross sections and then are converted to f-factors.

The modules FABULOUS and IRFFACTOR can also calculate the f-factors for the removal cross
section, which is a measure of elastic scattering staying in the group. The removal cross section is defined
as

1

∫ 𝜑(𝐸,𝑇,𝜎0)𝑑𝐸𝑖
∫ 𝑑𝐸𝜎2

(𝑗)(𝐸,𝑘)𝜑(𝐸,𝑘,𝜎0)∫ 𝑓0
𝐸
𝐸′=𝐸𝑖𝑖 � 𝐸,𝐸′� 𝑑𝐸′,

(Error!
Bookmark

not
defined.38)

where the definitions are as given in Eq. (12), and 𝐸𝑖 is the lower group boundary. Outside the thermal
range, elastic scattering does not scatter to exit energies larger than the incident energy; therefore, the
inner integral can be extended to the upper energy bound. This makes the removal cross section in the
infinite diluted limit the same as the diagonal elements of the scattering matrix for the elastic cross section
at Legendre order zero.

Using the narrow resonance flux defined in Eqs. (26) and (25), the narrow resonance removal cross
section can be calculated as a function of temperature and background value:

1

∫
𝜑𝑝𝑛𝑒(𝐸)

𝜎𝑡
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸𝑖

∫
𝜎2

(𝑗)(𝐸,𝑇)𝜑𝑝𝑛𝑒(𝐸)

𝜎𝑡
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸 ∫ 𝑓0
𝐸
𝐸′=𝐸𝑖𝑖 � 𝐸,𝐸′� 𝑑𝐸′.

(Error!
Bookmark

not
defined.39)

As before, two options are available to calculate the cross section data for the elastic or total cross section
in the unresolved resonance range. The first option is to use 𝜎𝑥

(𝑗,𝑢𝑝𝑝)(𝐸,𝑘,𝜎𝑙) as calculated by PRUDE,
and the second is to use the probability table data, in which case Eq. (39) in the unresolved resonance
range becomes

60

1

∫ ∑ 𝑃𝑝𝑝
𝜑𝑝𝑛𝑒(𝐸)

𝜎𝑡,𝑝
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸𝑖

∫ ∑ 𝑃𝑝𝑝
𝜎2,𝑝

(𝑗)(𝐸,𝑇)𝜑𝑝𝑛𝑒(𝐸)

𝜎𝑡,𝑝
(𝑗)(𝐸,𝑇)+𝜎0

𝑑𝐸 ∫ 𝑓0
𝐸
𝐸′1=𝐸𝑖𝑖 � 𝐸,𝐸′� 𝑑𝐸′.

(Error!
Bookmark

not
defined.40)

The f-factors for the removal cross section are calculated as a ratio between Eq. (39) and the diagonal
elements of the scattering matrix for the elastic cross section at Legendre order zero. In the case of
IRFACTOR, the module PMC updates the elastic scattering matrix, and the removal cross section as a
function of background cross section and temperature is retrieved as the diagonal element of the updated
elastic scattering matrix.

6.9 LAMBDA

The AMPX module LAMBDA computes group-dependent values for the λ factors used in the IR
approximation, which is widely used in Bondarenko self-shielding codes. The λ parameters also are used
in the AMPX IRFfactor module to determine background cross sections for the heterogeneous cells used
in computing the shielding factors, as shown in see Eqs. (35) and (36).

The IR approximation represents the moderating properties of a scatterer nuclide by the parameter λ,
which varies over the range of 0.0 to 1.0. The lower limit value of λ=0.0 corresponds to a wide resonance
(WR) scatterer, and the upper limit of λ=1.0 corresponds to a narrow resonance (NR) scatterer. A neutron
loses a negligible amount in a collision with a WR nuclide compared to the resonance energy widths of a
specified reference absorber material usually chosen to be 238U. Conversely, the resonance energy widths
of the reference absorber are negligibly small compared to the neutron energy lost in a collision with an
NR scatterer. Only an infinite mass nuclide strictly satisfies the requirements for a WR scatterer, while
hydrogen closely approximates an ideal NR scatterer in the epithermal energy range. The scattering
properties of all other materials are intermediate between these two limits, and they correspond to
fractional values of λ. Since the amount of energy lost per collision—as well as resonance widths of the
reference absorber—depends on the neutron energy, the IR parameters in general are functions of energy
group.

The AMPX module LAMBDA uses the hydrogen-equivalent method [41] to determine IR parameters for
a specified scatterer nuclide and reference absorber, assumed here to be 238U. First, a reference set of self-
shielded cross sections is computed for several infinite media mixtures of 238U and hydrogen, in which the
hydrogen-to-238U ratio is varied to span the range from minimal to infinite dilution. The flux spectra used
to weight the shielded 238U cross sections are calculated with the CENTRM transport code which uses
point-wise cross sections 238U and hydrogen. Next, some of the hydrogen atoms in the media are replaced
by a corresponding number of atoms of a given scatterer nuclide j. The CENTRM calculations are
performed again for the media, which now consists of 238U, hydrogen, and scatterer j. For this application,
the CENTRM calculations are performed using only the potential cross section for j. The shielded cross
section for the mixture will be different than the original mixture containing only hydrogen because the
slowing-down properties of j are different. However instead of one-to-one replacement, the number of j
atoms can modified to obtain the same shielded cross section as obtained with hydrogen. This is called the
hydrogen equivalent number density of j, and from this value, the corresponding lambda value for nuclide
j can be found. In practice, the hydrogen-equivalent value is obtained by matching the self-shielded cross
section with the corresponding value for the pure hydrogen moderated case. The process is repeated for
each nuclide and energy group to obtain group-dependent lambdas. This procedure is completely
automated in the module.

61

6.10 SIMONIZE

The module SIMONIZE is used to combine partial master libraries generated by X10 and FABULOUS
into a cohesive AMPX MG master library for a given evaluation. The module combines the data into one
AMPX MG master library after recalculating and renormalizing the data as follows:

1. 1-D cross section values below a user-specified value are set to 0. This includes negative cross section
values.

2. For thermal moderators like 1H in H2O, the elastic cross section (MT=2) is set to the 1-D collapse of
the thermal scattering matrices in the thermal range. The first thermal group defines the extent of the
thermal range.

3. If the evaluation uses the free-gas approximation for the thermal scattering matrices, the thermal
scattering matrices are renormalized such that when collapsed they result in the elastic cross section
as calculated from the ENDF information.

4. The elastic scattering matrix (MT=2) is set to zero in the thermal range, where the first thermal group
again defines the thermal range. The assumption is that the free gas scattering matrix should be used
in this range.

5. An AMPX master library should only contain up-scatter in the thermal range. Thus, scattering
matrices are corrected to not contain any up-scatter terms outside the thermal range. Any up-scatter
terms are added to the closest diagonal matrix element.

6. All redundant 1-D cross section values are recalculated from the partial cross section values.

7. If the library contains gamma production information, the module checks whether all production
matrices are given relative to the cross section. If not, the relevant scattering matrices are
renormalized to be relative to the cross section.

8. If a scattering matrix has a (Pl,l>0) term that is non-zero and the P0 term is zero, then the (Pl,l>0) is
also set to zero.

6.11 JAMAICAN

The modules generating kinematics data generate the double differential point-wise data. The CE
transport codes require the data in the form of marginal probabilities with respect to angle, and
conditional probability with respect to exit energy. The module JAMAICAN performs the conversion
from double differential point-wise to marginal, and conditional probabilities and can also eliminate
redundant points from the distribution and processes discrete gamma lines if processing gamma
production data.

In the case of elastic or discrete inelastic reactions (MT=2, 51-90) for incident neutrons, the module uses
the same number of angles and exit energies as given in the double differential point-wise data. The
necessary integrations are performed using standard AMPX integration routines, and the distribution is
normalized to one. In some cases (for example 1H, which has a mass ratio with respect to the incident
neutron of less than 1.0), elastic or discrete inelastic reactions can scatter to the same lab angle for
different exit energies. In these cases, the marginal probability for the angle lists the same angle twice
with different cumulative probabilities. The integration routine used in JAMAICAN steps through the

62

point-wise distribution, inverting integration boundaries where necessary, instead of using driver routines,
thus ensuring correct integration in the double-valued region.

In some cases, like coherent elastic scattering for thermal moderators, the double-differential distribution
can be discrete in angle. Scattering only occurs in specific directions determined by Bragg edges in the
crystal structure. JAMAICAN produces a special distribution for the marginal angle probabilities: for
each discrete angle, two angles are added to the distribution: one at the Bragg angle with the correct
probability, and the other offset with a probability of zero. This causes the CE transport codes to pick only
the discrete angles.

In all other cases, the angle distribution is assumed to be continuous. In most cases, equiprobable angle
bins are used for the marginal angle distribution, where the number of desired bins is given by the user. A
union grid of all angles for a given incident energy and all exit energies is first created, and the bin
boundaries are determined from the cumulative probability distribution on that grid. Unless not requested
by the user, an attempt is made to thin the union angle grid while preserving all values of the double
differential distribution. If the union grid can be thinned to use a number of angles smaller than the
requested number of equiprobable angles, this smaller number is used, and the angle distribution is tagged
as not equiprobable. Subsequently, the conditional energy distribution for each selected angle is
determined by interpolation from the full double differential function. Unless not requested by the user,
an attempt is made to thin the conditional energy distribution if the conditional probability can be
determined by linear interpolation.

6.12 PLATINUM

The module PLATINUM is used to create a cohesive CE library for a given evaluation from all the partial
parts generated by other modules. However, in contrast to SIMONIZE, which performs a similar task for
AMPX MG master libraries, the redundant cross section data are not recalculated, and the elastic cross
section is not changed in the thermal range for thermal moderators. These tasks should be performed by
other modules before passing the data to PLATINUM. The module unionizes the 1-D cross section data
as needed and calculates the collision probabilities. Depending on the availability of cross section data,
the following collision probabilities, which are typically needed by Monte Carlo transport codes, are
calculated:

MT Definition

2006

2018

2016

2017

63

6.13 PUFF-IV

The module PUFF-IV is used to generate covariance matrices with respect to the group-averaged cross
section data. A detailed description is available in a separate PUFF-IV manual [42].

ENDF contains covariance information for the point-wise data in Files 31 and 33. Covariance information
for resonance parameters in the resolved and unresolved range is given in File 32. Covariance information
for exit energy probability distributions is given in File 35, and data on exit angle are in File 34.

A covariance matrix is given with respect to two parameters:

𝐶𝐶𝑒(𝑥,𝑦) = 〈𝛿𝑥𝛿𝑦〉,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.41)

where

𝛿𝑥 = 𝑥 − 〈𝑥〉,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.42)

where 〈𝑥〉 is the expected value of parameter x and 𝛿𝑥 is the deviation from the expected value from the
true value. The standard deviation or uncertainty of the parameter x is then defined as

𝑠(𝑥) = �〈𝛿𝑥𝛿𝑥〉.

(Error!
Bookmark

not
defined.43)

In addition the correlation between two parameters is defined as

𝜌(𝑥, 𝑦) = 𝑆𝐶𝐶(𝑥,𝑦)
𝑠(𝑥)𝑠(𝑦) .

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.44)

All the above equations refer to absolute quantities. However, in the libraries produced by PUFF-IV,
relative quantities are used in which the covariance and the standard deviation are divided by the expected
values.

Assuming that a derived quantity 𝑓(𝑥1,𝑥2, 𝑥3, … , 𝑥𝑙) is to be calculated and covariance information for
the parameters is available, then the standard deviation for f will be

𝑠(𝑓) = �∑ �𝜕𝑒
𝜕𝑥𝑖

𝛿𝑥𝑖�
2

𝑙
𝑖=1 ,

(Error!
Bookmark not
defined.Error!
Bookmark not

64

defined.45)

and the covariance matrix for two different values of the function f would be

𝐶𝐶𝑒(𝑓1,𝑓2) = ∑ ∑ 𝜕𝑒1
𝜕𝑥𝑖

〈𝛿𝑥𝑖𝛿𝑥𝑗〉𝑙
𝑗=1

𝑙
𝑖=1

𝜕𝑒2
𝜕𝑥𝑗

.

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.46)

The above formulas are derived via the definition of the covariance in the case of a linear function with
respect to the individual parameters. The desired function, which is not likely to be linear in the
parameters, is converted to a linear function by using a first order Taylor expansion. Higher order effects
are neglected in the processing of the covariance information and the propagation of uncertainties. For
continuous function, the sums above are substituted by integrals.

6.13.1 Point-wise covariance for cross section data

In Files 31 and 33, covariance matrices for cross section data with respect to the incident energy are
given. Some covariance matrices are given directly, and some are given as derived matrices. If given as
direct covariance matrices, the covariance matrix is given on a fairly broad bin structure for the incident
energy. For a given bin, the covariance value is assumed to be constant. Covariance matrices are given for
incident energy, material, and reaction. ENDF contains partial covariance matrices:

𝐶𝐶𝑒�𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1),𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)� = 〈𝛿𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1),𝛿𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)〉,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.47)

where 𝑟𝑒𝑎𝑐𝑡1 describes one material and reaction, and 𝑟𝑒𝑎𝑐𝑡2 describes another material and reaction.
Since the matrices are partial covariance matrices, they do not need to be symmetric, and the bin
structures for the two incident energies can differ. PUFF-IV processes these point-wise covariance
matrices into covariance matrices with respect to group-averaged cross section values, which are defined
by eq. (11). Define

𝜙𝐼 = ∫ 𝜑𝑑𝐸𝐸∈𝐼

𝑥𝐼
𝑝𝑒𝑝𝑐𝑡1 = 1

𝜙𝐼
∫ 𝜑𝜎𝑝𝑒𝑝𝑐𝑡1𝐸∈𝐼 (𝐸)𝑑𝐸

.

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.48)

Note that

𝜕(𝑥𝐼)
𝜕𝜎(𝐸1) =

1
𝜙𝐼
�𝜑(𝐸12)𝜎(𝐸12)

𝜕𝐸12

𝜕𝐸1
− 𝜑(𝐸11)𝜎(𝐸11)

𝜕𝐸11

𝜕𝐸1
+ � 𝜑

𝜕𝜎(𝐸1)
𝜕𝜎(𝐸1)

𝐸12

𝐸11
𝑑𝐸� ,

=
1
𝜙𝐼
� 𝜑𝛿(𝐸 − 𝐸1)
𝐸12

𝐸11
𝑑𝐸 =

1
𝜙𝐼
𝜑(𝐸)

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.49)

where [𝐸11,𝐸12] is the energy range for group I. Then the group-averaged covariance matrix becomes

65

𝐶𝐶𝑒�𝑥𝐼
𝑝𝑒𝑝𝑐𝑡1 ,𝑥𝐽

𝑝𝑒𝑝𝑐𝑡2� =

∫ 𝑑𝐸1𝐸1∈𝐼
∫ 𝑑𝐸2𝐸2∈𝐽

𝜕�𝑥𝐼
𝑝𝑛𝑝𝑟𝑡1�

𝜕𝜎𝑝𝑛𝑝𝑟𝑡1(𝐸1)
〈𝛿𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1), 𝛿𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)〉

𝜕�𝑥𝐽
𝑝𝑛𝑝𝑟𝑡2�

𝜕𝜎𝑝𝑛𝑝𝑟𝑡2(𝐸2)
=

1
𝜙𝐼𝜙𝐽

∫ 𝑑𝐸1𝐸1∈𝐼
∫ 𝑑𝐸2𝐸2∈𝐽

𝜑(𝐸1)〈𝛿𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1),𝛿𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)〉𝜑(𝐸2).

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.50)

The covariance matrix 〈𝛿𝜎𝑟𝑒𝑎𝑐𝑡1(𝐸1),𝛿𝜎𝑟𝑒𝑎𝑐𝑡2(𝐸2)〉 is a point-wise matrix. However it is given as a
constant over evaluator defined incident energy bins. For ease of calculation, a super grid is generated
which contains the user-defined group structure and every evaluator-defined bin boundary for all
explicitly given matrices. Since the evaluator-supplied covariance is point-wise, the value is the same in
any subgroup of an evaluator defined group. Also, since all energy boundaries are included, partial group
values will not occur. Equally, 𝑥𝐼

𝑝𝑒𝑝𝑐𝑡1 and 𝜙𝐼can be divided into these subgroups. The covariance matrix
then becomes

1
𝜙𝐼
𝑠𝜙𝐽

𝑠 ∑ ∑ 𝐶𝐶𝑒 �𝜎𝑝𝑒𝑝𝑐𝑡1�𝐸1𝑆�,𝜎𝑝𝑒𝑝𝑐𝑡2�𝐸2𝑆��𝐸2
𝑠∈𝐽𝐸1

𝑠∈𝐼 𝜙𝐼𝑠𝜙𝐽𝑠,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.51)

where 𝐸1𝑠 denotes the energy groups on the super grid. If the point-wise cross section covariance is given
as a relative covariance, the equation on the super-grid becomes:

1
𝜙𝐼
𝑠𝜙𝐽

𝑠 ∫ 𝑑𝐸1𝐸1∈𝐼𝑠
∫ 𝑑𝐸2𝐸2∈𝐽𝑠

𝜑(𝐸1)𝜑(𝐸2)𝜎𝑝𝑒𝑝𝑐𝑡1𝜎𝑝𝑒𝑝𝑐𝑡2𝐶𝐶𝑒�𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1),𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)� =

∑ ∑ 𝐶𝐶𝑒 �𝜎𝑝𝑒𝑝𝑐𝑡1�𝐸1𝑆�,𝜎𝑝𝑒𝑝𝑐𝑡2�𝐸2𝑆��𝐸2
𝑠∈𝐽𝐸1

𝑠∈𝐼 𝑥𝐼
𝑝𝑒𝑝𝑐𝑡1𝑥𝐽

𝑝𝑒𝑝𝑐𝑡2 .

In order to collapse back to the user-defined group structure, it is noted that

𝑥𝐼 = 1
𝜙𝐼
∑ 𝜙𝐼𝑠𝐼𝑠∈𝐼 𝑥𝐼𝑠.

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.52)

Therefore, the covariance matrix between two broad groups is:

〈𝛿𝑥𝐼 , 𝛿𝑥𝐽〉 =
1

𝜙𝐼Φ𝐽
�𝜙𝐼𝑠
𝐼𝑠∈𝐼

� 𝜙𝐽𝑠
𝐽𝑠∈𝐽

𝜕𝑥𝐼𝑠

𝜕𝑥𝐼𝑠
〈𝑥𝐼𝑠, 𝑥𝐽𝑠〉

𝜕𝑥𝐽𝑠

𝜕𝑥𝐽𝑠
=

1
𝜙𝐼Φ𝐽

�𝜙𝐼𝑠
𝐼𝑠∈𝐼

� 𝜙𝐽𝑠
𝐽𝑠∈𝐽

〈𝑥𝐼𝑠, 𝑥𝐽𝑠〉

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.53)

In addition to direct covariance matrices with respect to point-wise cross section data, ENDF includes
derived matrices. For the first case, the evaluator simply defines that a given cross section is defined as
the sum over several other reactions. Not only does this define the covariance matrix for the given
reaction, the reaction is now also correlated with all the partial reactions that make up the defined
reaction. PUFF_IV automatically adds these extra cross correlation matrices. Another option open to the
evaluator is to define the cross section as being given as a ratio with respect to the cross section of another
material and reaction. The ratio is assumed to have no uncertainty, and a covariance matrix for the
dependent cross section can therefore easily be calculated.

66

All the choices open to the evaluator—i.e. explicit or derived covariance matrices—can be used over
defined energy ranges. If a matrix is given for a partial energy range, all matrix elements are set outside
the range to zero. The final matrix can then simply be formed by adding the various partial energy range
matrices together. This relies on the fact that ENDF in these cases does not give a correlation between the
matrices for the partial energy ranges.

The group-averaged cross section on the super grid that is needed to calculate the group-averaged
covariance matrices is calculated from the point-wise cross section and flux data. PUFF_IV also has the
capability to use cross section data from an MG library. In this case, the cross section data for any
subgroup of a user-defined MG group is simply assumed to be identical to the cross section of the large
group. This ensures that the latter collapse from fine group to broad group results on the original MG
cross section value. The flux is treated similarly if given on user-defined groups.

6.13.2 Resolved resonance covariance matrix

In the resolved range, the covariance matrices are given for all resonance parameters. In order to
propagate the covariance information to the point-wise cross section, partial derivatives of the cross
section with respect to a given resonance parameter are needed. PUFF_IV uses SAMRML, a part of
SAMMY [43], to calculate these derivatives. The SAMRML library, which is part of SAMMY, uses
analytical formulas to calculate the derivatives for the full R-matrix Reich-Moore formalism. If the
resonance parameters in ENDF are given for single- or multi-level Breit-Wigner formalism, they are
converted to the full R-matrix Reich-Moore formalism prior to derivatives being calculated. The
covariance matrix with respect to the point-wise cross section thus becomes

〈𝜎𝑝𝑒𝑝𝑐𝑡1(𝐸1),𝜎𝑝𝑒𝑝𝑐𝑡2(𝐸2)〉 = ∑ 𝜕𝜎𝑝𝑛𝑝𝑟𝑡1

𝜕𝑃𝑘𝑘𝑙 〈𝑃𝑘 ,𝑃𝑙〉
𝜕𝜎𝑝𝑛𝑝𝑟𝑡2

𝜕𝑃𝑛
,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.54)

where the sum is over all resonance parameters 𝑃𝑙. The formula for the point-wise covariance matrix with
respect to the cross section can be inserted into Eq. (50) to yield

𝐶𝐶𝑒�𝑥𝐼
𝑝𝑒𝑝𝑐𝑡1 ,𝑥𝐽

𝑝𝑒𝑝𝑐𝑡2� =
1

𝜙𝐼𝜙𝐽
∫ 𝑑𝐸1𝐸1∈𝐼

∫ 𝑑𝐸2𝐸2∈𝐽
𝜑(𝐸1)∑ 𝜕𝜎𝑝𝑛𝑝𝑟𝑡1

𝜕𝑃𝑘𝑘𝑙 〈𝑃𝑘 ,𝑃𝑙〉
𝜕𝜎𝑝𝑛𝑝𝑟𝑡2

𝜕𝑃𝑛
𝜑(𝐸2).

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.55)

If the user defines

𝐷𝐼𝑘
𝑝𝑒𝑝𝑐𝑡1 = ∫ 𝑑𝐸1𝜑(𝐸1)𝐸1∈𝐼

𝜕𝜎𝑝𝑛𝑝𝑟𝑡1

𝜕𝑃𝑘
,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.56)

then the formula becomes

𝐶𝐶𝑒�𝑥𝐼
𝑝𝑒𝑝𝑐𝑡1 ,𝑥𝐽

𝑝𝑒𝑝𝑐𝑡2� = ∑ 𝐷𝐼𝑘
𝑝𝑒𝑝𝑐𝑡1

𝑘𝑙 〈𝑃𝑘 ,𝑃𝑙〉𝐷𝐽𝑙
𝑝𝑒𝑝𝑐𝑡2 .

(Error!
Bookmark not
defined.Error!

67

Bookmark not
defined.57)

The integral in Eq. (56) is solved using a fourth-order Runge-Kutta method with adaptive step size [27].
Since the number of resonance parameters can be large, solving Eq. (57) can take a long time. Therefore,
PUFF_IV can be compiled with the BLAS library [44], which has functions for the type of matrix
operation needed in Eq. (57) to speed up the process considerably.

6.13.3 Unresolved resonance covariance matrix

The covariance data given in File 32 for the unresolved range are independent of energy in the range they
are given. This is the case, even if the unresolved resonance parameters given in File 2 are energy
dependent. Therefore, the resonance parameters given in File 32 are used to calculate the covariance
matrix with respect to the cross section instead of the parameters used to calculate the point-wise cross
section data for the library. The parameters for the unresolved resonance range are given as an average
value and a distribution function for those values, which is a 𝜒2 distribution with an evaluator-defined
number of degrees of freedom. The formula for the average cross section at a temperature of 0 K involves
a statistical integral, which is calculated using a quadrature integration as outlined in Steen 1969 [45]
using the weights and abscissa given in Henryson 1976 [46]. Since all resonance parameters are
independent of energy, the derivative of the statistical integral becomes straightforward, and the derived
integrant is integrated using the same quadrature weights and abscissa as the original integral. After
taking the point-wise derivative, the formulas for calculating the covariance matrix with respect to the
group averaged cross section data are identical to the ones used in the resolved resonance range.

6.13.4 Exit energy covariance matrix

The ENDF evaluations can contain covariance matrices for the exit energy. The covariance matrices are
independent of incident energy in a given range of incident energies. Covariance matrices may be given
for several ranges of incident energies, but correlation between these ranges are not supported in the
ENDF formatted files. For a given incident energy range, a covariance matrix with respect to the exit
energy is given. The covariance matrix elements are given on an exit energy bin structure. The value
given is the covariance matrix on the bin probability and not on the bin-averaged probability function.
This is equivalent to the group-averaged covariance on an evaluator defined group structure. Therefore, if
the group-averaged one-dimensional 𝜒 is defined as

𝜒𝑖′ = ∫ 𝑓(𝐸,𝐸′)𝐸′∈𝑖′ 𝑑𝐸′,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.58)

and:

∫ 𝑓(𝐸,𝐸′)∞
0 𝑑𝐸′ = 1,

(Error!
Bookmark not
defined.Error!
Bookmark not

defined.59)

then the covariance matrix given is:

68

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Err
or!
Book
mar
k not
defin
ed.E
rror!
Book
mar
k not
defin
ed.6
0)

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Er
ror!
Boo
km
ark
not
defi
ned.
Err
or!
Boo
km
ark
not
defi
ned.
61)

〈𝛿𝜒𝑖′𝐼 , 𝛿𝜒𝑖′𝐽〉

(Error!
Bookmark

not
defined.Er

ror!
Bookmark

not
defined.62)

on an evaluator-defined group structure, which needs to be converted to the user-defined group structure.
Since 𝜒 is normalized to 1, combining two groups into one group simply implies adding the values for the
two groups. Therefore, the same applies for the covariance:

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Erro
r!
Book
mark
not
define
d.Err
or!
Book
mark
not
define
d.63)

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Err
or!
Book
mar
k not
defin
ed.E
rror!
Book
mar
k not
defin
ed.6
4)

〈𝛿𝜒𝑖′𝐼 , 𝛿𝜒𝑖′𝐽〉 =
∑ 〈𝛿𝜒𝑖′𝐼′, 𝛿𝜒𝑖′𝐽′〉𝐼′∈𝐼,𝐽′∈𝐽 .

(Error
!

Book
mark

not
define

d.Erro
r!

Book
mark

not
define
d.65)

If splitting a larger group into several groups, 𝜒 scales with the bin width, i.e.

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Error
!
Book
mark
not
define
d.Erro
r!
Book
mark

� 𝑓(𝐸,𝐸′)
∞

0
𝑑𝐸′ = 1

(Error
!
Book
mark
not
define
d.Erro
r!
Book
mark

Δ𝐸𝐼 = ∑ Δ𝐸𝑖𝑖∈𝐼

𝜒𝑖′𝐼 = ∑ 𝜒𝑖′𝑖
Δ𝐸𝑖
Δ𝐸𝐼𝑖∈𝐼

,

(Error!
Bookm
ark not

defined.
Error!
Bookm
ark not

defined.
68)

69

not
define
d.66)

not
define
d.67)

and the covariance elements scale similarly with the bin width.

70

7. MISCELLANEOUS USEFUL INFORMATION

7.1 PROCESSING OF ENDF TAPES

ENDF/B formatted files are read in some of the AMPX modules. A number of functions to read and in
some cases write parts of ENDF/B formatted files are collected in the EndfLib library. A more modern
and modular version of this library is provided in EndfCLib, which is used in AMPX modules written in
C++. The basic building blocks of an ENDF/B formatted file are control records, text records, list records,
tab1 records, tab2 records, and intg records (see ENDF-102 manual for details [Error! Bookmark not
defined.]). The older library functions implemented in FORTRAN read the nuclear data files into
memory, but they still require the calling program to be aware of the ENDF structure. The new library
functions implemented in C++ store the ENDF data in structures that are closely tied to the actual data. In
the case of the new C++ library, an interface layer between the ENDF data files and the processing code
allows easy support for new formats of the nuclear data files like the GND format developed by Lawrence
Livermore National Laboratory (LLNL) [47]. The new library is mostly used in Y12, the module used to
process kinematic data. The module PUFF-IV, which is used to process covariance information, uses its
own ENDF reading library that predates the two AMPX libraries.

7.2 FILE FORMATS USED IN AMPX

7.2.1 Tab1 formats

Many programs that need cross section vs. energy data for different reaction and temperatures use a
binary TAB1 format for the files. The format closely resembles the format for File 3 in an ENDF
formatted file, except that the definitions for some of the fields in the control records have different
meanings, depending on the data stored in the file. The energy and cross section data can be given in
single or double precision. Most programs will automatically detect the difference. An exception is the
module CHARMIN that converts between different forms of the tab1 formatted files. The file format
consists of one or more Type 1 records and ends in a Type 2 control record.

71

Type 1 record

MAT,MF,MT,AWR, ZA, L11,L21,N11,N21

MAT,MF,MT,TEMP,SIG0,L12,L22,N21,N22, (NBT(I),INT(I),I=1,N21), (X(I),Y(I),I=1,N22)

MAT,MF,MT,0.0, 0.0, 0,0,0,0

The values for AWR,ZA,TEMP and SIG0 are always single precision float values. The values for X and
Y can be single or double precision float values. However, all X and Y values in a given file have to be of
the same type.

Type 2 record

MAT,0,0,0.0,0.0,0,0

The C++ class Tab1Container in endfCLib can be used to access the data. Child classes implement the
disk I/O for the data. For an example on how to use Tab1Container_m, look at the PICKEZE module.
The module CHARMIN will convert between allowed formats of the Tab1 file.

7.2.2 Kinematics file

Y12 writes a kinematics file in a native format. For historical reasons, there are a couple of other
kinematic file formats used in AMPX. However, these file formats will be phased out as the
modernization of AMPX progresses. The only other format still in use is the legacy Y12 format, which is
used by the CRAWDAD module in SCALE to read scattering kernel data for thermal moderators. The
C++ class KinematicContainer in endfCLib holds the data in memory. Child classes manage the disk I/O.

Record 1: MT, NTEMP, ZAI

 Loop over NTEMP Temperatures

 Record 2: T, NSUB

 Loop over NSUB Subsections

 Record 3: NE, MT, ZAI, ZAP, AWP, AWR, Q, LAB

 Loop over NE incident energies

 Record 4: E, NF, UNION, DISCRETE, ELASTIC

 Loop over NF Exit Energies

 Record 5: LEG, M, EF

 Record 6a (if LEG = 2): (COSi, i=1,M)

 Record 6: (VALi, i=1,M)

72

The terms used above are defined as follows:

MT the process identifier

NTEMP the number of temperatures at which data are given

ZAI the ZA value of the incident particle

T the temperature at which data are given (K)

NSUB the number of subsections given for a temperature

ZAP the ZA value of the outgoing particle

AWP the mass ratio of the outgoing particle

AWR the mast ratio of the target particle

Q the Q value of the reaction

LAB 1 if data are given in laboratory frame of reference, 0 otherwise

NE the number of incident energies

E the incident energies at which kinematics data are given

NF the number of sink energies

UNION integer, not used

DISCRETE 1 if the exit energy distribution is discrete, 0 otherwise

ELASTIC 1 if the reaction is elastic or discrete inelastic, 0 otherwise

LEG 1: distribution is given in Legendre moments

 2: distribution is tabulated as a function of cosine of the exit angle

 3: distribution is given in cosine moments

M number of moments (if LEG=1 or LEG=2) or number of exit angles

EF the exit energy

COS the cosine values of the exit angle (only used if LEG=2)

VAL the value of the distribution

Note that AWP and ZAP are used to describe multiple exit particles that may be produced by a particular
reaction (e.g., if the exit particle is a neutron, then AWP=1.0; if it is a gamma, then AWP=0.0).

All float values are stored in double precision.

While there are sections that collected data for a given reaction and temperatures, there can be more than
one section for a given reaction or temperature.

73

The module KINKOS can be used to transform the kinematics file to one of the legacy formats if needed.

7.2.3 MASTER LIBRARY AND WORKING LIBRARY FORMATS

The AMPX MG formats have been designed to allow a generality paralleling that of the ENDF/B point
libraries. For example:

1. The formats can accommodate neutron libraries, gamma libraries, or coupled neutron-gamma
libraries.

2. An arbitrary number of reaction cross sections can be included with ENDF/B identifiers used for
processes where possible.

3. An arbitrary order of anisotropy can be treated which can vary from nuclide-to-nuclide or even from
process-to-process in the case of the master library. Temperature dependence is allowed on the master
library.

4. The master library can contain Bondarenko data for resonance self-shielding by BONAMI.

5. The master library can include scattering matrix data for an arbitrary number of processes.

In the case of the resonance data, partial energy-range data can be specified. For example, on some of the
SCALE libraries, the Bondarenko data are only for the unresolved region, which will vary from nuclide-
to-nuclide.

Potentially the most space-consuming data on a cross section library are the transfer matrix data. AMPX
uses so-called magic word arrays for these data which help to eliminate zero and/or impossible data
elements. This procedure is especially important for the master library, where the library may contain data
for more than 50 separate processes represented to an arbitrary level of anisotropy.

The master and working library formats are written using a combination of seven kinds of information,
each of which has one or more record types associated with it:

1. Header information – written on the front of the library to specify the number of neutron and/or
gamma groups, the number of nuclides, etc., contained in the library (Record Type 1).

2. Energy structure information – contains the group boundaries (Record Type 2).

3. Nuclide directory information – 50 words that give a title for the nuclide, along with other parameters
that specify the kinds of information included for the nuclide, such as number of records in the library
for the nuclide and how much neutron and gamma data are given (Record Type 3).

4. Bondarenko data – four record types are used for this information:

a. A record that gives the values of σ0 and T at which the factors are tabulated, along with cutoff
energies for the Bondarenko calculation. The parameter σ0 is called the background cross section
and represents the cross section value for all nuclides mixed with the nuclide being calculated,
and T is the temperature value (Record Type 5).

b. A directory record containing information about the specific processes for which the Bondarenko
factor data apply, such as the process, the energy groups for which data are given, etc. (Record
Type 6).

74

c. A record containing infinite dilution values for a process (Record Type 7).

d. A record containing the Bondarenko factors for a process (Record Type 8).

5. A record containing average cross sections by process (Record Type 9).

6. Three record types are used to present transfer matrices:

a. A directory record that specifies the processes, orders of anisotropy, lengths, units, etc. (Record
Type 10).

b. A record to specify temperatures when the matrices are temperature dependent (Record Type 11).

c. A magic-word record to store a transfer matrix (Record Type 12).

A discussion of the structure of each of the various record types follows.

Record Type 1 (Header Record)

The header record is the first record on a master and a working library and always contains 110 words:

 1. IDTAPE An identification number for the library

 2. NNUC The number of sets of data on the library

 3. IGM The number of neutron energy groups on the library.

 4. IFTG The first thermal neutron group on the library (i.e., the first group that receives an
upscatter source)

 5. MSN Master library version type (2 for NITAWL-II resonance processing compatibility)

 6. IPM The number of gamma-ray energy groups on the library

 7. I1 Zero

 8. I2 (0/1 = no/yes) A trigger that specifies that this library was produced by weighting a
working library in the XSDRNPM module.

 9. I3 Zero

 10. I4 Zero

 11. – 110. (TITLE(I), I=1,100)

 100 words of text describing the cross section library.

Record Type 2 (Energy Boundaries)

This record is on both a master library and a working library and specifies the energy boundaries in eV of
the neutron groups and/or gamma groups, followed by the corresponding lethargy boundaries. The energy
boundaries are arranged in descending order, followed by the lethargy boundaries in ascending order.
The lethargy zero is normally taken at 10 MeV. The structure is

75

(EB(I),I=1,IGP), (UB(I),I=1,IGP) ,

where IGP is the number of groups plus 1.

Record Type 3 (Cross section Set Directory Record)

Each set of data on a master or working library has a 50-word directory record that specifies certain
parameters needed to determine dimensions required to process the data and to describe the make-up of
the set of data. Table 1 describes these data.

Note that the 50-word records are made up of integer, character, and floating-point words. Words 1–18
and 49 are character data. Words 29, 30, 34, 35, and 43 are floating point. All other words are integers.
For both types of libraries, many parameters may have no meaningful interpretation for a particular set of
data. This situation is especially true of the working library. For example, words 20, 21, 22, 25, and 26
only have meaning if the working library has been produced by weighting a previous working library.
Zero values will be used when a parameter is not applicable.

Record Type 4 (Resonance Parameters)

No longer used.

Table 1. Record type 3 (cross section directory record)

Word(s) Master library Working library
1–18 18 words of text describing the set 18 words of text describing the set

19 Identifier of the set Identifier of the set
20 Number of 6-parameter sets of resolved

resonance data
Identifier of the set from which this set derived

21 Number of energies at which to evaluate
unresolved values

Zone number in which the nuclide occurred

22 Number of neutron processes for which
group-averaged values are given (temperature
independent)

Number of zones in problem which produced this set

23 Number of neutron processes with scattering
arrays

Length of P0 total scattering matrix

24 Zero Order of expansion of total scattering matrix
25 Number of gamma processes for which group-

averaged values are given
Sequence of this set in all zone-weighted sets

26 Number of gamma processes with scattering
arrays

Number of zone-weighted sets for this nuclide

27 Number of neutron-to-gamma processes Maximum length of any scattering array in with
scattering arrays

28 (Maximum order of scattering)*32768 + (total
number of separate scattering arrays for this
set)

Number of neutron processes which have group-
averaged values

29 A − neutron equivalent mass number A − neutron equivalent mass number
30 ZA − 1000*Z + A ZA − 1000*Z + A
31 Zero Zero
32 Zero Zero
33 Zero Zero

76

34 Power per fission in watt-sec/fission Power per fission in watt-sec/fission

77

Table 2. Record type 3 (cross section directory record) (continued)

Word(s) Master library Working library
35 Energy release per capture in watt-sec/capture Energy release per capture in watt-sec/capture
36 Maximum length of any scattering array in the

set
Zero

37 Number of sets of Bondarenko data Zero
38 Number of σ0 values in Bondarenko data Zero
39 Number of temperature values in Bondarenko

data
Zero

40 Maximum number of groups in Bondarenko
data

Zero

41 Zero Number of gamma processes that have group-
averaged values

42 Zero Zero
43 σp — potential scattering cross section Zero
44 Zero Zero
45 ENDF MAT for fast neutron data ENDF MAT for fast neutron data
46 ENDF MAT for thermal neutron data ENDF MAT for thermal neutron data
47 ENDF MAT for gamma data ENDF MAT for gamma data
48 ENDF MAT for gamma production data ENDF MAT for gamma production data
49 Source: 0=ENDF Source: 0=ENDF
50 Number of records in this set Number of records in this set

Record Type 5 (First Record of Bondarenko Block)

This record is used to specify the σ0 and temperature values at which all Bondarenko factors for the
nuclide will be presented. It also specifies the upper and lower energies for which factors can apply in the
case where they do not span all energy groups. The number of σ0 values, NSIG0, is specified in the 38th
word in the set directory, and the 39th word specifies the number of temperatures, NT. The record
structure is

(σ0(I), I=1, NSIG0), (T(I), I=1, NT), ELO, EHI.

The σ0 values can either ascend or descend; the temperatures are expressed in Kelvin in ascending order.
The parameter σ0 is the cross section value for the other nuclides mixed with a nuclide in a particular
situation.

Record Type 6 (Directory for Bondarenko Data)

This record type is used to specify the processes that have Bondarenko data in the set. Its length is six
times NBOND, the number of Bondarenko processes, specified in the 37th word in the set directory.
The structure is the following:

(MT(I), I=1, NBOND),

(NF(I), I=1, NBOND),

(NL(I), I=1, NBOND),

78

(ORDER(I), I=1, NBOND),

(IOFF(I), I=1, NBOND), and

(NZ(I), I=1, NBOND).

The parameters have the following interpretation: MT is the identifier of the process (e.g., MT = 2 is for
elastic scattering, as in ENDF/B). NF is the number of the first energy group for which parameters are
given. NL is the last group for which parameters are given. ORDER is used to specify lower group of
homogeneous or heterogeneous f-factors and IOFF the upper group. NZ is presently unused and has a
zero value.

Record Type 7 (Infinite Dilution Values for Bondarenko Data)

Each process that has Bondarenko data has one of these records which contain the infinite-dilution values
for the process. Its structure is

(σ∞(I), I=NF, NL),

where NF and NL, are the first and last groups with data for the process.

Record Type 8 (Bondarenko Factors)

This record is a 3-D array and contains the Bondarenko factors for a process. Its structure is

(((BF(I,J,K), I=1, NSIGO), J=1, NT), K=NF, NL).

Record Type 9 (Temperature-Independent Average Cross Sections)

This record type is used to present average cross sections, sometimes called 1-D cross sections on the
library.

Its structure is

MT1, (σ1(I), I=1, IGM)

MT2, (σ2(I), I=1, IGM)

 .

 .

 .

MTLAST, (σLAST(I), I=1, IGM),

where the MTs are the process identifiers, and the cross sections, σ, are given for all groups (NOTE: The
MTs are given as floating point numbers).

79

Record Type 10 (Scattering Matrix Directory)

An AMPX master library always provides a directory that identifies the scattering matrices which are
given for a nuclide. The structure is

(MT(I), I=1, N2D),

(L(I), I=1, N2D),

(NL(I), I=1, N2D), and

(NT(I), I=1, N2D),

where N2D is the number of scattering (2-D) processes, MT is the process identifier, L is the maximum
length of any of the scattering matrices for the process, NL is the order of Legendre fit to the scattering
matrix, and NT is a parameter whose definition depends on the type of data (whether neutron, gamma
production, or gamma) given as follows:

1. For neutron-neutron data, NT is the number of temperatures at which scattering matrices are given. If
only one temperature is present it may be 0.

2. For gamma production data, NT is zero if the data are in yield units and is unity if they are in cross
section units.

3. For gamma-gamma data, NT is zero.

Record Type 11 (Scattering Matrix Temperatures)

This record type is only used on a master library and specifies the temperatures (in eV) of the scattering
matrices. It is only used for neutron-neutron data and is given when NT > 0 (see Record Type 10). The
temperatures are in ascending order as follows:

(T(I), I=1, NT).

Record Type 12 (Scattering Matrix)

This record type is used to store scattering-matrix data (sometimes called 2-D data). As will be illustrated,
it has provisions for truncating zero and/or impossible elements from the array. It exists in two forms:
(1) a self-defining form used for gamma production data on a master library and for all scattering matrices
on a working library, and (2) a form that is not self-defining. The only difference is that the self-defining
form specifies the length as the first word, while the other does not; that is,

L, (X(I), I=1, L)

or

(X(I), I=1, L).

The structure of the X-array is as follows:

80

magic word for a group,

terms for scattering to the group,

magic word for the next group,

terms for scattering to this group,

etc..

In some cases, a negative or zero magic word is used to specify the end of data in the record.

A magic word is used to define:

1. the sink group number, III,
2. the first group number, JJJ, which scatters to this group, and
3. the last group number, KKK, which scatters to this group.

The magic word is then defined as

MW = 1000000*JJJ + 1000*KKK + III,

such that it is composed of three 3-digit integers:

MW : JJJKKKIII .

The scattering terms below a magic word are in reverse ordering (following typical practice for transport
theory programs); that is, the scattering term for scattering from the last group is first, etc.:

MW for group III

σ(KKK→III)

σ(KKK-1→III)

 .

 .

 .

σ(JJJ→III)

The scattering matrix record will contain one Pℓ matrix for a process.

Consider an elastic scattering matrix for hydrogen which will be a full triangular matrix and assume three
energy groups. The scattering matrix will look as follows:

81

1001001

σ(1→1)

1002002

σ(2→2)

σ(1→2)

1003003

σ(3→3)

σ(2→3)

σ(1→3)

NOTE: The record is a mixture of integer and floating-point terms.

AMPX Master Library Format

The overall structure of an AMPX master library is given as follows:

 Record type

Header record 1

Nuclide directory
(one record per nuclide)

3

Neutron energy boundaries 2

Gamma energy boundaries 2

Records for nuclide 1

Records for nuclide 2

etc.

82

The structure of the records of a nuclide is:

 Record type

Nuclide directory record 3

Bondarenko data
(one set per nuclide)

5,6,7,8

Temperature-independent group-averaged neutron
cross sections

9

Scattering matrix data for neutrons 10,11,12

Scattering matrix data for gamma production 10,12

Group-averaged gamma cross sections 9

Scattering matrix data for gammas 10,12

The internal structure for Bondarenko data is:

 Record type

(σ0(I),I=1,NSIGO),(T(J),J=1,NT),EL,EH 5

Bondarenko data directory
 (MT(I),I=1,NBOND),
 (NF(I),I=1,NBOND),
 (NL(I),I=1,NBOND),
 (ORDER(I),I=1,NBOND),
 (IOFF(I),I=1,NBOND),
 (NZ(I),I=1,NBOND)

6

The following records are given in pairs for all
NBOND Bondarenko processes.

Infinite dilution values
(σ∞(i),I=NF,NL)

7

Bondarenko factors
(((BF(I,J,K),I=1,,NSIGO),J=1,NT),K=NF,NL)

8

The internal structure of the scattering matrix data for neutrons is:

 Record type

Scattering matrix directory
 (MT(I),I=1,N2D),
 (L(I),I=1,N2D),
 (NL(II),I=1,N2D),
 (NT(I),I-1,N2D)

10

The following structure is repeated N2D times.

83

Temperature values (NT>0)
 (T(I),I=1,NT)

11

The following record is repeated MAX(1,NT)*(NL+1) times.

Scattering matrix
 (X(I),I=1,L)

12

84

The internal structure for gamma production scattering is:

 Record type
Scattering matrix directory
 (MT(I),I=1,N2D),
 (L(I),I=1,N2D),
 (NL(I),I=1,N2D)

10

For each process, I=1, N2D, the following record type is
given NL+1 times corresponding to the P0, P, ..., PNL matrices.
Self-defining scattering matrix length
 LENGTH,(X(I),I=1,LENGTH)

12

The internal structure for gamma-gamma scattering is:

 Record type
Scattering matrix directory
 (MT(I),I=1,N2D),
 (L(I),I=1,N2D),
 (NL(I),I=1,N2D),
 (NT(I),I=1,N2D)

10

For each process, I=1, N2D, the following record type is
given NL+1 times corresponding to the P0, P1, ..., PNL matrices.
Scattering matrix
 (X(I),I=1,L)

12

AMPX Working-Library Format

The overall structure of a working library is given below:

 Record type
Header records 1
Neutron energy boundaries 2
Gamma energy boundaries 2
Nuclide directory
(one record per nuclide)

3

Records for nuclide 1
Records for nuclide 2
etc.

The structure of the records for a nuclide is:

85

 Record type
Nuclide directory record 3
Group-averaged neutron cross sections 9
Group-averaged gamma cross sections 9
The P0, P1, ..., PNL total scattering matrices are presented in self-
defining records.
L,(X(I),I=1,L) 12

The AMPX and SCALE code system uses a C++ class AmpxLibrary with FORTRAN bindings to read,
save, and store MG library data.

7.2.4 CE library format

The following description provides the cross section formatting details for a single isotope/nuclide in a
CE KENO cross section library. Note that the description only applies to the library format and does not
reflect how the data are stored in the code during a calculation.

7.2.4.1 Cross section file format

The cross section file for each nuclide/isotope is composed of multiple blocks of data that describe the
physics of radiation transport for a specific isotope/nuclide. The organizational structure of the various
blocks of data within the library is presented in Table 2.

Table 3. Continuous-energy cross section file organization

Block Description
Zero

temperature
file

Temperature
-dependent

file
-0 AMPX/SCALE Header Block yes yes
1 Header Information yes yes
2 ν Data yes

3 MT Data yes yes

4 Unionized energy grid for total, elastic scattering, fission and
capture

yes yes

5 CE cross section data [σ(E)] yes yes
6 Energy-dependent collision probabilities yes
7 Forward kinematics data (secondary angle and energy distributions) yes yes
8 Probability table data yes
9 Macroscopic cross sections (not used) yes
10 Adjoint source (not used) yes
11 Adjoint kinematics data (not used) yes yes

12–20 Not used

Each block can have multiple records that are used to describe the physics associated with each type of
data block. A description of the records within each data block is provided in the subsequent sections.

86

Each nuclide/isotope has one zero-temperature file (also referred to as a temperature-independent file)
and multiple temperature-dependent files. Zero-temperature files contain the reactions that do not change
as a function of temperature. Temperature-dependent files contain the reactions that have been Doppler
broadened for the specified temperature. The cross section files for the nuclides with thermal scattering
data have been generated at the temperatures that are provided in the corresponding ENDF/B evaluation
files. All other nuclides/isotopes have multiple temperature-dependent files.

7.2.4.2 AMPX/SCALE header information block

The first block contains the header information related to data generation (i.e., date, code version etc.).
The format of the AMPX/SCALE header block is provided in Table 3. Note that record number 1, which
contains the information about the number of records of type character, real, and integer is not included in
the counter for the number of records. For example, if NC is 10, then the last record of character type is
record number 11.

87

Table 4. AMPX/SCALE header information block format

Record Parameter Type Description
1 NC Integer Number of records of character variables
1 NR Integer Number of records of real variables
1 NI Integer Number of records of integer variables

2 FILENAME Character*80 Filename prefix used for this nuclide
2 AMPXDATE Character*80 Date AMPX modules were created
2 SCALEDATE Character*80 Date SCALE modules were created
2 ICFILEDATE Character*80 Date input creater was created

3 ICVERSION Character*80 Version of input creater
3 AXVERSION Character*80 Version of AMPX modules used
3 SCVERSION Character*80 Version of SCALE modules used
3 FILEDATE Character*80 Date this file was created

4 FVERSION Character*80 Version of this file format
4 UNION Character*80 Flag to signal unionized cross sections
4 DUM Character*80 Dummy place holder
4 DUM Character*80 Dummy place holder
 NEXT (NC-4) RECORDS HAVE THE FOLLOWING STRUCTURE

5 to NC DUM,TEMPSUFFIX,DUM,DUM Character*80 DUM – character dummy place holder
TEMPSUFFIX – suffix in the filename for
each temperature

NC+1 BLANK
 NEXT (NR) RECORDS HAVE THE FOLLOWING STRUCTURE

NC+2 to
NC+NR

DUMR,TEMP,DUMR,DUMR Real DUMR – real dummy place holder
TEMP – temperature at which cross sections
are available

NC+NR+1 DUMR,DUMR,DUMR,DUMR Real DUMR – real dummy place holder
 NEXT (NI) RECORDS HAVE THE FOLLOWING STRUCTURE

NC+NR+2 to
NC+NR+NI+1

DUMI,DUMI,DUMI,DUMI 4Integer DUMI – integer dummy place holder

7.2.4.3 Header information block

The header block is used to provide the generic information about the library and subsequent data blocks.
The format of the header block is provided in Table 4. Note that the first record in the header block
identifies the material, and a mixture parameter is provided to associate the isotope/nuclide with a mixture
number. During the generation of a CE KENO library, the mixture ID is set to zero. If a problem-
dependent library is prepared in the future, the mixture ID will be set to the appropriate mixture number.
The header block always has 12 records and exists in zero-temperature and temperature-dependent files.

88

Table 5. Header block format

Record Parameter Type Description
1 MAT Integer ENDF material identifier
1 ID Integer ID Source
1 MIX Integer mixture ID (> 0 for problem dependent library, 0 otherwise)
1 ZA Integer ZA number for isotope/nuclide (Z*1000+A)

2 LENGTH Integer Length of TITLE array
2 TITLE Character*100 Character*LENGTH title that includes source ENDF identification

3 LFI integer Fission flag (LFI = 0/1 does not fission/does fission)
3 LPTAB Integer Probability table flag (LPTAB = 0/1 no tables/tables present)
3 ISO Integer Isotope flag (0/1 no/yes)
3 LSAB Integer S(α,β) data exist (0/1 no/yes)
3 NMT Integer Number of 1-D reactions
3 NUM_FAST integer Number of 2-D temperature independent MTS
3 NUM_THERM integer Number of 2-D temperature dependent MTS
3 MAX_ANGLES Integer Maximum number of angles in 2-D kinematics block
3 MAX_EXITE Integer Maximum number of exit energies in 2-D kinematics block
3 MAX_TEMPS Integer Maximum number of temperatures
3 CHANCE Integer 2-D 1st, 2nd, 3rd, or 4th chance fission data exist
3 METASTATE Integer State of the nuclide, 0 indicates ground state

4 AWR Double Atomic weight ratio
4 ELR Double Lower energy boundary for resolved-resonance region (eV)
4 EHR Double Upper energy boundary for resolved-resonance region (eV)
4 ELU Double Lower energy boundary for the unresolved-resonance region (eV)
4 EHU Double Upper energy boundary for the unresolved-resonance region (eV)

4 TEMP(i),
i=1,MAX_TEMPS Double Temperature (K) for the cross section data

5 SIGP Real Potential cross section

6–12 Not used

7.2.4.4 block (if LFI=1)

The format of the ν record within the data block is provided in Table 5. Note that this block can have up
to four different ν records. The first record provides the total ν as a function of energy, and the format
has provisions to provide the delayed and prompt ν as a function of energy. The final record provides
the ratio of delayed ν to total ν as a function of energy. This block exists in zero degree files only.

89

Table 6. ν data block format

IZA MB NU_COUNT MAX_NR MAX_NP
452 NR NP NBT(n) INT(n) n=1,NR E(i) ν (i) i=1,NP

455 NR NP NBT(n) INT(n) n=1,NR E(i) ν d(i) i=1,NP

456 NR NP NBT(n) INT(n) N=1,NR E(i) ν p(i) i=1,NP

459 NR NP NBT(n) INT(n) N=1,NR E(i) ν d(i)/ ν
(i)

i=1,NP

The variables for the ν record are defined as follows:

IZA integer form of ZA number [integer],

MB block number (MB = 2) [integer],

NU_COUNT Number of types of ν data (possible MTs listed below) [integer],

MAX_NR Maximum number of NR values [integer],

MAX_NP Maximum number of NP values [integer],

MT 452/455/456/459 total/delayed/prompt/ratio of delayed to total [integer],

NR number of interpolation regions [integer],

NP number of points [integer],

NBT(n) end point of interpolation region n [integer],

INT(n) interpolation type for region n (ENDF interpolation types) [integer],

E(i) ith energy point [double],

ν (i) value of total ν corresponding to E(i) [double],

ν d(i) value of delayed ν corresponding to E(i) [double],

ν p(i) value of prompt ν corresponding to E(I) [double], and

ν d(i)/ ν (i) ratio of delayed ν to total ν at E(i) [double].

7.2.4.5 MT block

Both zero degree and temperature-dependent files contain all MT numbers for all temperatures. Table 6
lists the structure of the two MT records.

90

Table 7. Reaction identifier (MT) data block format

IZA

MB

0

C1

C2

L1

L2

N1

NUM_FAST_1D

MT(i)

i=1,NUM_FAST_1D

IZA

MB

0

C1

C2

L1

L2

N1

NUM_THERM_1D

MT(i)

i=1,NUM_THERM_1D

IZA integer form of ZA number [integer]
MB block number (MB = 3) [integer]
C1 place holder for real quantity (typically 0.) [double]
C2 place holder for real quantity (typically 0.) [double]
L1 place holder for integer quantity (typically 0) [integer]
L2 place holder for integer quantity (typically 0) [integer]
N1 place holder for integer quantity (typically 0) [integer]
NUM_FAST_1D number of temperature-independent reactions [integer]
NUM_THERM_1D number of temperature-dependent reactions [integer]
MT(i) identifier for the ith reaction [integer]

7.2.4.6 Unionized energy grid block

The energy mesh is for MT=1 (total). Since all temperature-dependent MTs are unionized, the mesh is the
same for all MTs. Note that even though the temperature-independent MTs are not unionized, the mesh
contains the points for temperature-independent MTs, as well. This allows quick mapping of the
temperature-independent MTs before execution in KENO. The unionized energy grid data are listed in
Table 7. Note that the collision probabilities have a different energy mesh that is also included in the
energy grid block. The zero degree file contains all energy grids for all temperatures (MAX_TEMPS sets
of records), whereas the files for specific temperatures contain only the energy grid for that temperature.

Table 8. Unionized energy grid
data block format

IZA MB TEMP NE NE_CP
E(i) i=1,NE

E_CP(i) i=1,NE_CP

IZA integer form of ZA number [integer]
MB block number (MB = 4) [integer]
TEMP Temperature (K) [double]
NE number of energy points [integer]
NE_CP number of energy points for collision probabilities [integer],
E(i) ith Energy point [double]
E_CP(i) ith Energy point for collision probability arrays [double]

7.2.4.7 CE cross section block

This block exists in each file with temperature-dependent files being slightly different. Since the energy
grid for the temperature-dependent MTs is already in BLOCK 4 (MB=4), the energy points, E(i), are not
included in the temperature-dependent files. Table 8 shows the records and their structure.

91

Table 9. CE microscopic cross section data block format

IZA

MB

TEMP

MAX_NR

MAX_NP

MT1

Q

TEMP

EMIN

EMAX

NOUT

NR

NP

NBT(n)

INT(n)

n=1,NR

E(i)

σ(i)

i=1,NP

MT2

Q

TEMP

EMIN

EMAX

NOUT

NR

NP

NBT(n)

INT(n)

n=1,NR

E(i)

σ(i)

i=1,NP

MTNUM_MTX

Q

TEMP

EMIN

EMAX

NOUT

NR

NP

NBT(n)

INT(n)

n=1,NR

E(i)

σ(i)

i=1,NP

IZA integer form of ZA number [integer]

MB block number (MB = 5) [integer]

TEMP Temperature (K) [double]

EMIN Minimum energy of the reaction (includes additional point with zero cross
section value for interpolation purposes) [double]

EMAX Maximum energy of the reaction (includes additional point with zero cross
section value for interpolation purposes) [double]

MAX_NR Maximum of NR values [integer]

MAX_NP Maximum of NP values [integer]

MT Reaction identifier [integer]

NUM_MTX Number of MTs (NUM_FAST_1D in temperature-independent file,
NUM_THERM_1D in temperature-dependent file) [integer]

Q reaction energy or Q value [double]

NOUT number of secondary neutrons produced by the reaction (Note: if
MT=18,19,20, 21 or 38, the number of secondary neutrons is determined from
the ν data block, and NOUT will be set to zero. For neutron disappearance
reactions, NOUT is also set to zero) [integer]

L1 place holder for integer quantity (typically 0) [integer]

NR number of interpolation regions [integer]

NP number of points [integer]

NBT(n) end point of interpolation region n [integer]

INT(n) interpolation type for region n (ENDF interpolation types) [integer]

E(i) ith energy point [double]

σ(i) microscopic cross section value corresponding to E(i) [double].

92

7.2.4.8 Energy-dependent collision probabilities

The following block of data provides the energy-dependent collision probabilities. The energy-dependent
collision probabilities that are needed for the Monte Carlo random walk are the nonabsorption
[Pinabs(E)], absorption [Piabs(E)] and fission [Pif(E)] probabilities:

()()
()

()()
()

() ()
()

()

i
i s

nabs i
t

i
i a

abs i
t

i i
fi

f i
t

EP E
E
EP E
E

E E
P E

E

σ
σ

σ
σ

ν σ
σ

=

=

=

where

σ s
i(E) = scattering cross section for isotope/nuclide i,

σt
i(E) = total cross section for isotope/nuclide i,

σa
i(E) = absorption cross section for isotope/nuclide i,

σf
i(E) = fission cross section for isotope i, and

ν i(E) = average number of neutrons released per fission at energy E for
isotope i.

In addition, (n,2n) and (n,3n) reaction probabilities are also saved if those reaction cross sections exist for
the nuclide. The energy-dependent absorption and fission probabilities can be used in both the forward
and adjoint modes of transport; however, the nonabsorption probability defined above is not the same in
the adjoint mode of transport. Therefore, an adjoint nonabsorption probability can be defined as follows:

*

(,)
()

()

i
s

Ei
nabs i

t

dE d E E
P E

E
µ

µσ µ

σ

′→
′ =

′

∫ ∫
,

where

σ s
i(E′ → E, µ) = isotope/nuclide i differential scattering cross section for

scattering from E′ to E through angle µ, and

σt
i(E′) = isotope/nuclide i total cross section at energy E′.

For each isotope/nuclide, the energy-dependent collision probability block may have up to five different
records that correspond to the five different collision probabilities. If the LFI flag is zero, the fission
probability record is zero for the isotope. Each collision probability record is provided in the format
shown in Table 9.

93

This block is in temperature-dependent files only. Note that since the unionized energy grid data block
already includes the points for the collision probability data, energy points are not included.

Table 10. Energy-dependent collision probability data block format

IZA MB NREAD TEMP MAX_NR MAX_NP

2006 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2006(i) i=1,NP
2007 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2007(i) i=1,NP
2016 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2016(i) i=1,NP
2017 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2017(i) i=1,NP
2018 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2018(i) i=1,NP
2027 C1 TEMP L1 L2 NR NP NBT(n) INT(n) n=1,NR P2027(i) i=1,NP

IZA integer form of ZA number [integer]

MB block number (MB = 6) [integer]

NREAD Number of collision probability records (e.g., nonfissile nuclides don’t have
2018, pure-scatterers don’t have 2027) [integer]

TEMP Temperature (K) [double]

MAX_NR Maximum of NR values for all collision probabilities [integer]

MAX_NP Maximum of NP values for all collision probabilities [integer]

MT collision probability identifier [integer]

 MT = 2006: nonabsorption probability

 MT = 2007: adjoint nonabsorption probability

MT = 2016: (n,2n) reaction probability

MT = 2017: (n,3n) reaction probability

 MT = 2018: fission probability

 MT = 2027: absorption probability

C1 place holder for real quantity (typically 0.) [double]

TEMP Temperature (K) [double]

L1 place holder for integer quantity (typically 0) [integer]

L2 place holder for integer quantity (typically 0) [integer]

NR number of interpolation regions (NR = 1) [integer]

NP number of points [integer]

NBT(n) end point of interpolation region n [NBT(NR) = NP] [integer]

INT(n) interpolation type for region n [INT(NR) = 2] [integer]

PMT(i) collision probability at energy E(i) [double]

94

7.2.4.9 Forward kinematics data block

The kinematics section of the library provides the information for determining the exiting energy and
angle of a particle emerging from a collision with a target isotope/nuclide. Because of the complexity of
collision kinematics, different types of collision representations may be provided depending upon the type
of reaction to be processed.

Zero-temperature files contain extra records that are used to dimension the required arrays. These records
are listed in Table 10. Record number 2 in Table 10 is repeated for each temperature (including zero) so
that the total number of records is MAX_TEMPS+2.

Table 11. Header records in zero-temperature file only

IZA

MB

NUM_FAST+ NUM_THERM

MAX_NR

MAX_ANGLES

MAX_EXITE

MAX_MU(n)

n=1, NUM_FAST+NUM_THERM

MAX_EOUT(n)

n=1,NUM_FAST+NUM_THERM

7.2.4.10 Forward kinematics block

The kinematics data are provided for each reaction that has a secondary angle and energy distribution The
format of the kinematics data for each reaction is provided in Table 11. The definitions for each parameter
in Table 11 are provided in the description that follows the table. The data structure in Table 11 appears to
be rather complex; however, the structure is needed to accommodate coupled energy-angle distributions.
A universal kinematics data structure is desired to accommodate all possible secondary energy-angle
distributions. The most complex structure is the coupled energy-angle data for thermal scattering and
ENDF/B File 6 distributions. By addressing the most complex structure with the kinematics format, the
less complex distributions can be treated by default. Therefore, the data structure outlined in Table 11 was
developed to address the coupled distributions. In terms of Monte Carlo, the data structure represents the
joint CDF for selecting the secondary angle and energy. As with any method, there are pros and cons to
the structure in Table 11. The data structure has the advantage of uniformity; however, there is a storage
penalty associated with the representation of non-coupled energy-angle distributions. For the purposes of
CE KENO, the uniform data structure advantage outweighs the added storage cost that is incurred.

As shown in Table 11, the kinematics data structure has a header record that specifies the number of
sections (NSECT) used to describe the secondary distributions for the reaction. The kinematics structure
is divided into NSECT incident energy blocks, and the first record within each section specifies the
incident energy range and number of incident energies (NE) for the section. For example, the first section
in Table 11 is characterized with incident energies between E11 and E1NE, and the last section is defined
for incident energies between ENSECT1 and ENSECTNE. Note that the NE values can vary between
sections.

Each section is subsequently divided into multiple blocks of data that describe the secondary energy-angle
distributions. The first block of data has a secondary angular cosine distribution for each incident energy;
therefore, there are NE angular distributions in the (E, µ) data block. In terms of Monte Carlo, each
angular distribution record in the (E, µ) data block corresponds to the marginal CDF for selecting the
secondary angle at an incident energy. The format specifies NPU secondary cosines for each incident
energy, and the number of secondary cosines can vary between incident energies. In other words, the
NPU variable can change between incident energies within a section. The NPU angle cosines correspond

95

to NPU - 1 cosine bins. For example, the first angle bin has a lower boundary of µ1 and an upper
boundary of µ2.

Each µ distribution is defined with NPU angle cosines and the corresponding cumulative probability, Cµ,
for each cosine bin. In addition, the value of the PDF at each angle, Pµ, is also provided in the format. For
the secondary angular distribution, the Pµ values are needed for interpolation purposes. Because there are
NPU - 1 cosine bins, there are NPU - 1 Cµ values provided with the distribution; however, there are NPU
values of the PDF that are provided for each angular cosine. As a result, the NPU location in the
cumulative probability distribution is not needed and is zero.

Following the (E, µ) data block in a section are multiple blocks of data that describe the secondary energy
distributions. As noted previously, each incident energy has a secondary distribution of NPU angle
cosines. For each (E, µ) pair, there is a corresponding secondary energy distribution that can have NPE
secondary energies. As indicated in Table 11, there is an (E, µ, E′) data block for each incident energy,
and there are NPU secondary energy distribution records within each (E, µ, E′) data block. Each
secondary energy distribution record within an (E, µ, E′) block represents a conditional CDF for selecting
the exit energy for a given incident energy E and secondary angle µ. The term conditional CDF implies
that the exit cosine has been selected, and the corresponding CDF for exit energy defines the probability
of selecting the exit energy for the given secondary angle cosine.

The format of each secondary energy distribution record is analogous to the secondary angular
distribution representation. For each (E, µ) pair, there are NPE secondary energies that correspond to NPE
- 1 energy bins. Moreover, the cumulative probabilities, CE′, for each energy bin are also provided with
the distribution. For each secondary energy, there is a location that can be used to store the value of the
PDF for the exit energy, PE′, that is used for interpolation during the sampling process. If the reaction is
elastic or discrete-level inelastic scattering, the PE′ values will be interpolation parameters for the power-
interpolation method that was initially developed for the BONAMI module.

There are two special cases that can be described with the kinematics structure in Table 11. If the
secondary angular distribution is isotropic at an incident energy E, there will be a single exit cosine
specified (i.e., NPU =1) in the (E, µ) block with a value of -2.0 and corresponding probability of 1.0. As a
result, the exit cosine will be sampled uniformly between -1.0 and 1.0. Since there is only one exit cosine
specified for isotropic scattering, the (E, µ, E′) block will have one record that specifies the secondary
energy distribution for any secondary angle at an incident energy E. If the interaction mechanism is
coherent or incoherent elastic scattering, there is no change in energy resulting from the collision
(i.e., E′ = E). Therefore, each secondary energy distribution in the (E, µ, E′) block will only have one exit
energy with a value of E and corresponding probability of 1.0.

The following table shows the kinematics data structure. Zero degree file contains temperature-
independent reactions only (NUM_FAST MTs). Temperature-specific files contain the temperature-
dependent MTs for that temperature (NUM_THERM MTs).

96

Table 12. Forward kinematics data structure for a single reaction

MT

TEMP

NSECT

Header record

E11 E1NE NR NE AWP LD ZAP YIELD

1st Section
E11 C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELD1

(E 1, µ) Block

Marginal CDF

E12 C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELD2

·

·

·

E1NE C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELDNE

E11 µ(1) 1 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

(E 11 , µ , E′) Block

Conditional CDF

E11 µ(2) 2 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

·

·

·

·

·

·

·

·

·

E11 µ(NPU) NPU LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

E12 µ(1) 1 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

(E 12 , µ , E′) Block

Conditional CDF

E12 µ(2) 2 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

·

·

·

·

·

·

·

·

·

E12 µ(NPU) NPU LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

 · ·

97

·

·

·

·

·

·

E1NE µ(1) 1 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

(E 1NE , µ , E′) Block

Conditional CDF

End 1st Section

E1NE µ(2) 2 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

·

·

·

·

·

·

·

·

·

E1NE µ(NPU) NPU LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

ENSECT1 ENSECTNE NR NE AWP LD ZAP YIELD

NSECT Section
ENSECT1 C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELD1

(E NSECT , µ) Block

Marginal CDF

ENSECT2 C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELD2

·

·

·

ENSECTNE C2 LMU L2 NR NPU µ(1:NPU) Cµ(1:NPU) Pµ(1:NPU) YIELDNE
ENSECT1 µ(1) 1 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

(E NSECT1 , µ , E′) Block

Conditional CDF

ENSECT1 µ(2) 2 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

·

·

·

·

·

·

·

·

·

ENSECT1 µ(NPU) NPU LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)
 · ·

 · ·

98

·

·

·

·

ENSECTNE µ(1) 1 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

(E NSECTNE , µ , E′) Block

Conditional CDF

End NSECT Section

ENSECTNE µ(2) 2 LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

·

·

·

·

·

·

·

·

·

ENSECTNE µ(NPU) NPU LE NR NPE E′(1:NPE) CE′(1:NPE) PE′(1:NPE)

IZA integer form of ZA number [integer]

MB block number (MB = 7) [integer]

MT reaction identifier [integer]

NSECT number of angle-energy distribution sections [integer]

AWP atomic weight [double]

LD flag to indicate discrete reaction [0=no;1=discrete]

ZAP particle charge [double]

YIELD total yield for this incident energy [double]

LMU flag for secondary angular distribution data [integer]

 LMU = 0: secondary angle data provided in equiprobable cosine bins

 = 1: secondary angle data provided in nonequiprobable cosine
bins

LE flag for secondary energy distribution data [integer]

 LE = 0: secondary energy data provided in equiprobable bins

 = 1: secondary energy data provided in nonequiprobable bins

99

E n
i ith incident energy point (eV) for the nth section [double]

C2 place holder for real quantity (typically 0.) [double]

TEMP Temperature (K) [double]

L2 place holder for integer quantity (typically 0) [integer]

NR place holder for integer quantity (typically 0) [integer]

NE number of incident energy points [integer]

NPU number of secondary µ values [integer]

NPE number of secondary energy (E′) values [integer]

µ(j) jth secondary angle cosine [double]

Cµ(j) cumulative probability for the jth secondary angle cosine bin [double]

Pµ(j) value of the PDF for the jth secondary angle cosine [double]

Yield Yield for the given incident energy

E′(j) jth secondary energy point (eV) [double]

CE′(j) cumulative probability for the jth secondary energy bin [double]

PE′(j) value of the PDF for the jth secondary energy point or power interpolation
parameter [double]

100

7.2.4.11 Probability table block

Probability tables are provided if the isotope has an unresolved-resonance region (URR). Note that the
AMPX module PURM does not process multi-isotope nuclides with unresolved-resonance data.
Consequently, a nuclide evaluation with unresolved-resonance data will not have probability table
information; however, for practically all ENDF nuclide evaluations with unresolved data, there are
corresponding individual isotope evaluations available in ENDF to construct the appropriate nuclide.

Table 12 provides the format for the probability tables for a particular isotope. This block exists in
temperature-dependent files only. In the URR, a probability table is defined for a range of energies
between Ei and Ei+1. Moreover, the probability table provides possible cross section values for the total,
elastic scattering, fission and capture reactions in the unresolved range. The table is constructed based on
the total cross section. Therefore, the values in the table define the probability for the total cross section
value between Ei and Ei+1. During the random walk, the ith bin is selected to obtain the total cross
section, and the corresponding values of the elastic scattering, fission and capture reactions are also
obtained from the ith bin.

Note that the probability table block allocates four separate records for each reaction within a table. If the
isotope is fissionable (LFI = 1), four separate reaction identifiers will be present in each table; however,
for nonfissionable isotopes (LFI = 0), the fission cross section for each table is zero.

Based on the probability table structure, the format has a cross section band flag LBND that describes the
structure of the table. If LBND is 0, the cross section bands are equiprobable, and if LBND is 1, the cross
section bands are not equiprobable.

Table 13. Probability table structure for unresolved region

IZA

MB

0

ELR

EUR

SIG0

N1

NTAB

Header record

MT1

E1,1

E1,2

LTABLE1

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

Table 1

MT2

E1,1

E1,2

LTABLE1

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

MT3

E1,1

E1,2

LTABLE1

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

MT4

E1,1

E1,2

LTABLE1

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

·
·

·

MT1

ENTAB,1

ENTAB,2

LTABLENTAB

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

Table NTAB

MT2

ENTAB,1

ENTAB,2

LTABLENTAB

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

MT3

ENTAB,1

ENTAB,2

LTABLENTAB

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

MT4

ENTAB,1

ENTAB,2

LTABLENTAB

LBND

NB

σMT(i)

CMT(i)

PMT(i)

i=1,NB

101

IZA integer form of ZA number [integer]

MB block number (MB = 8) [integer]

ELR threshold for URR (eV) [double]

EUR upper boundary for URR (eV) [double]

L1 place holder for integer quantity (typically 0) [integer]

L2 place holder for integer quantity (typically 0) [integer]

N1 place holder for integer quantity (typically 0) [integer]

NTAB number of probability tables in block [integer]

MTi reaction identifier [integer]

 MT1 = 1: total

 MT2 = 2: elastic scattering

 MT3 = 18: fission

 MT4 = 102: capture

En,1 lower energy bound for table n (eV) [double]

En,2 upper energy bound for table n (eV) [double]

LTABLEn probability table number corresponding to nth table [integer]

LBND cross section band flag [integer]

 LBND = 0: cross section bands are equiprobable

 LBND = 1: cross section bands are not equiprobable

NR place holder for integer quantity (typically 0) [integer]

NB number of cross section bands [integer]

NBT(n) dummy array that is not used for probability table data [integer]

INT(n) dummy array that is not used for probability table data [integer]

σMT(i) cross section value for reaction MT corresponding to the ith cross section band
[double]

CMT(i) cumulative probability for reaction MT corresponding to the ith cross section
band [double]

PMT(i) probability for reaction MT corresponding to the ith cross section band
[double]

7.3 REACTION TYPE IDENTIFIERS

Reaction types in ENDF data are identified by integers called MT numbers. Within the AMPX system,
the ENDF MT numbers are used where possible to identify the appropriate cross section data. AMPX
processed data with no ENDF MT number counterpart are identified by integers outside the range of the
ENDF MT numbers. Special values are listed in the following sections.

102

7.3.1 Multiplicity matrices

A MG library produced by the module X10 may contain several 1-D and 2-D data combining fission and
multiplicity data. It is assumed that the number of source groups and sink groups is identical. For each
pair of primary fission reaction f (mt=18, 19, …) and multiplicity (mt=452, 455, 456), the following 2-
D and 1-D data are produced:

1. A scattering matrix using the appropriate kinematics distribution. It is multiplied by

2. A normalized scattering matrix, which is the matrix produced in step, divided by

3. A 1-D vector of the length of sink groups: , where the sum is over all

source groups and is the flux used for the given source group. The 1-D vector is

normalized so that .

The same MT value is used for items 2 and 3. Table 13 lists the MT values used for items 1-3:

Table 14. Total and fractional multiplicity MT values

Primary
MT

Secondary
MT Distribution Total matrix

(Item 1)
Fraction matrix
(Items 2 and 3)

1-D value for

18 452 18 1452 1018 452
18 456 18 1456 1056 455
18 455 455

(if no present 18)
1455 1055 456

19 456 19
(if not present 18)

1419 1019 4561

20 456 20
(if not present 18)

1420 1020 4562

21 456 21
(if not present 18)

1421 1021 4563

38 456 38
(if not present 18)

1438 1038 4564

7.3.2 Additional Reaction values used in AMPX

The reaction types given in Appendix B of the ENDF manual [Error! Bookmark not defined.] are
augmented where necessary to describe identifiers assigned to AMPX processed data. See Table 13 for
definitions of χ values. In addition to the matrices and 1-D cross sections described in Sect. 7.3.1, the
values given in Table 14 are used.

103

Table 15. Reaction numbers used in the AMPX code system

MT Description
1-1000 Same as ENDF
1007 Thermal scattering matrix-may contain coherent and incoherent data
1008 Thermal scattering matrix for coherent data
1099 Group integral of the weighting function for neutron cross sections
1599 Group integral of the weighting function for gamma cross section
2000 Lambda factor
2022 Removal cross section
3002 Initially the same as MT=2, may be update during transport calculations
3018 Initially the same as MT=18, may be update during transport calculations
3102 Initially the same as MT=102, may be update during transport calculations

7.4 MISCELLEANEOUS USEFUL INPUT FILES

7.4.1 Print 1-D cross section data from AMPX master or working library

The module PALEALE will print detailed information concerning all data from an AMPX master or
working library. However, it is useful to occasionally generate a list of (x,y) data for a selected cross
section for plotting.

=shell

cp /scale/scale6.svn/data/scale.rev06.xn238v7 ft31f001

end

=tabasco

0$$ 31 32 e

1$$ 1 e t

2$$ 92235 e

3$$ 102 e t

end

=charmin

input=32 output=33 single to plot

end

=shell

cp ft33f001 ${RTNDIR}/u235_capture

end

The above input selects the capture cross section (MT=102) for 235U (ID=92235) from an AMPX master
library and prints it as a list of (x,y) histogram values in file u235_capture.

104

7.4.2 Convert (x,y) data into a weighting function file

In order to create MG libraries, a flux file is needed. If a custom flux is used in the form of (x,y) pairs, the
following input can be used to convert to a TAB1 formatted file that can be used in the sequences (please
note that the flux needs to be per unit of energy, not per unit of lethargy):

=shell

cp ${RTNDIR}/weight.dat ft30f001

end

=charmin

in=30 out=10 fidas to double

end

=shell

cp ft10f001 ${RTNDIR}/weighting

end

The file weight.dat contains the weighting function in FIDO format, as shown below:

2## e

2$$ 9.900000E+01 3.000000E+00 2.099000E+03 0 0 0 0 1 n e

t

2## e

2$$ 9.900000E+01 3.000000E+00 2.099000E+03 0 0 0 0 1 n e

t

3$$ n 2.000000E+00

4##

 1.000000E-05 0.000000E+00

 3.162280E-05 1.458894E-02

 1.000000E-04 2.551780E-02

 1.019370E-04 2.599223E-02

 1.039120E-04 2.824284E-02

….

Nth data point

t

2$$ 9.900000E+01 3.000000E+00 0

 0.000000E+00 0.000000E+00 0.000000E+00 0 0 0

2## a4 0.000000E+00 0 e t

2$$ 9.900000E+01 0.000000E+00 0

105

 0.000000E+00 0.000000E+00 0.000000E+00 0 0 0

2## a4 0.000000E+00 0 e t

2$$ 0.000000E+00 0.000000E+00 0

 0.000000E+00 0.000000E+00 0.000000E+00 0 0 0

2## a4 0.000000E+00 0 e t

Where n is the number of data points desired. The first pair of 2## and 2$$ arrays gives the integer and
floating points values of the first control record. The first three numbers are the MAT, MF and MT
values. The neutron sequences expect MAT=99 and MT=2099, the gamma sequences expect MAT=99
and MT=1599. The last two numbers simply give the number of interpolation regions (1) and the number
of data points (n). The pair of 2## and 2$$ arrays are repeated to conform to the definition of a data block
in File 3 in the ENDF-102 standard. The 3$$ array lists the interpolation table, which in this case is
linear-linear for all data points. The 4## array lists the data points. The final block after the customary “t”
ending of fidas input simply lists the SEND and FEND control records.

7.5 INTEGRATION ROUTINES IN AMPX6

In constructing MG cross sections, functions or products of two or more functions must frequently be
integrated. Some applications, such as that of generating Bondarenko factors (See the Sect. 6.8 on the
FABULOUS module), involve considerably more complicated expressions and functions to be
simultaneously treated. Over the development of AMPX, integration routines have evolved. Several
integration routines support all interpolation codes allowed in the ENDF-102 standard, but it is generally
expected that the point-wise data are given with linear-linear interpolation. While some of the older
methods for integration are still in use, all the new modules use one of four methods:

1. The Tab1 class provides routines to integrate one-dimensional data.

2. A general class NumIntegrate uses a Fifth-order Runge-Kutta method with adaptive step-size as
described in Numerical Recipes [27]. The user must extend this class to provide the function that
needs to be integrated.

3. IntegrateCross is used to generate 1-D group-averaged cross section data. It assumes that the point-
wise data use linear-linear interpolation and forms a union grid, and then it solves the integral
analytical as a product of two or three straight lines.

4. IntegrateMatrix is the class used to generate MG scattering matrices. It uses a combination of option
1 and 2 in conjunction with a unit-based interpolation to calculate the scattering matrix.

Some older AMPX modules use other integration routines; these will be phased out as the modules are
modernized and converted to C++.

106

8. INPUT FILE GENERATION

8.1 AUTOMATIC INPUT FILE GENERATION

It is frequently desired to create a MG or CE library based on a selected set of ENDF/B formatted files.
The auxiliary AMPX code ExSite greatly helps with the task of preparing the input files. This section
focuses on the background of input file generation, while the use of ExSite is described in Sect. 4.

ExSite first parses the desired ENDF/B formatted file and generates an abbreviated list of information
pertinent to library creation. The list is stored in XML format to allow easy human and machine
readability. The list is used in conjunction with templates that contain the input descriptions for the
AMPX modules necessary to generate the desired library. In general, more than one template is needed to
generate the final library. The next section describes the creation of the abbreviated ENDF list in more
detail. The format of the templates is described later.

8.1.1 ENDF listing

The templates used to generate AMPX input files require a list of ENDF information which is assumed to
be in xml format and must contain a root element named Materials. The information is automatically
extracted from ENDF/B formatted files. The given file can contain one or more evaluations. For each
evaluation, an XML element named Material is added to the XML file. The element contains
attribute/value pairs for every piece of information extracted from the ENDF evaluation. The available
attributes are listed in Table 15. Since an extensible XML format is used, more attribute value pairs may
be added in the future.

Table 16. Field names automatically extracted from the ENDF evaluation

Name Description
tape The full name of the file containing the evaluation
filename The name (without the path) of the file containing the evaluation
endf The endf material number
za The standard material charge number

Retrieved from C1 position in first record of File 1
awr The mass ratio of the material

Retrieved from C2 position in first record of File 1
dbrcnuclide Set to “yes” if a >= 200.
tag A name that uniquely describes the material

Constructed from columns 1–11 of the fifth record of File 1
(Denoted ZYNAM in ENDF manual)

mod The ENDF evaluation modification number.
Retrieved from N2 position in first record of File 1
(Denoted NMOD in ENDF manual)

rel The ENDF evaluation release number.
Retrieved from L1 position in third record of File 1
(Denoted LREL in ENDF manual)

nlib The library source (ENDF, JEFF, etc.)
eval The date of the ENDF evaluation

Retrieved from columns 23–32 of the fifth record of File 1
(Denoted EDATE in ENDF manual)

107

Table 15. Field names automatically extracted from the ENDF evaluation (continued)

Name Description
awi Mass ratio of the incident particle
zai ZA value of the incident particle
neutron Set to “yes” if incident particle is a neutron. Otherwise set to “no”

Based on C1 value in third record of File 1
(Denoted AWI in ENDF manual)

gamma Set to “yes” if incident particle is a gamma. Otherwise set to “no”
Based on C1 value in third record of File 1
(Denoted AWI in ENDF manual)

author The name of the authors of the ENDF evaluation
Retrieved from columns 34–66 of the fifth record of File 1
(Denoted AUTH in ENDF manual)

lab The name of the originating laboratory
Retrieved from columns 12–22 of the fifth record of File 1
(Denoted ALAB in ENDF manual)

dist The original distribution date of the ENDF evaluation
Retrieved from columns 23–32 of the sixth record of File 1
(Denoted DDATE in ENDF manual)

rdate Date of the last revision of the ENDF evaluation
Retrieved from columns 34–43 of the sixth record of File 1
(Denoted DDATE in ENDF manual)

rev The version number of the library
Retrieved from the N2 value of the third record of File 1
(Denoted NVER in ENDF manual)

metaStable Set to “true” if the material is metastable, otherwise set to “false”
Determined from columns 1–11 of the fifth record of File 1
(Denoted ZYNAM in ENDF manual)

version Library format
Retrieved from N2 position in second record of File 1
(Denoted NFOR in ENDF manual)

lis State number of the target nucleus.
Retrieved from L2 position in second record of File 1

fission Set to “yes” if File 1 contains any of the following reaction: 452, 455, 456, 458
file2 Set to “yes” if the evaluation contains a File 2
nis Contains the number of isotopes given in File 2
resonance If File 2 is present and contains resonance parameters for the resolved resonance rangeIt

is set to:
• “SLBW” if the resonance parameters are given in Single Level Breit Wigner

format. (ENDF parameters LRF=1)
• “MLBW” if the resonance parameters are given in Multi Level Breit Wigner

format. (ENDF parameters LRF=2)
• “RM” if the resonance parameters are given in Reich-Moore format. (ENDF

parameters LRF=3)
• “AA” if the resonance parameters are given in Adler-Adler format. (ENDF

parameters LRF=4)
• “RML” if the resonance parameters are given in R-Matrix Limited format.

(ENDF parameters LRF=7)
If more than one resolved resonance region is given for the evaluation, the value reflects
the format for the last resonance region given.

108

Table 15. Field names automatically extracted from the ENDF evaluation (continued)

Name Description
res If File 2 is present and contains resonance parameters for one or more resolved

resonance regions the value is set to “yes”
unres If File 2 is present and contains resonance parameters for one or more unresolved

resonance regions the value is set to “yes”
scattering If File 2 is present set to the potential scattering cross section. It is determined from the

first resolved resonance range for each isotope given in the evaluation as follows (if the
file only contains an unresolved resonance range, the radius given in that section is
used):

1. Set the scattering radius ap to AP (see ENDF manual) if NRO = 0. If NRO >
0, set ap to the first radius given in the table of energy radius pair. If LRF=3
and ap=0.0, select first APL (see ENDF manual)

2. If only an unresolved region is present, select AP from it
3. If LRF=7 select APE from the first group of Jπ values and the second channel
4. Calculate the potential scattering cross section as:

5. If more than one isotope is present, add the cross section data calculated in step

2 according to the abundance of each isotope
file3 Set to “yes” if the evaluation contains a File 3
file4 Set to “yes” if the evaluation contains a File 4
file5 Set to “yes” if the evaluation contains a File 5
totalFission Set to “yes” if the evaluation contains a File 5 and File 5 contains a section for MT=18

(total fission)
partialFission Set to “yes” if the evaluation contains a File 5 and File 5 contains a section for MT=19,

MT=20, MT=21 or MT=38 (second chance fission)
file6 Set to “yes” if the evaluation contains a File 6
AWP0 Set to “yes” if File 6 contains photon production yield matrices. This is true if any of the

sections has a mass ratio of 0 for the product. In addition if LAW=2, the mass ratio can
contain the gamma energy if the charge for the outgoing particle is 0

file7 Set to “yes” if the evaluation contains a File 7
file7temps If File 7 exists, it contains the list of temperatures at which the moderator data were

evaluated
file12 Set to “yes” if the evaluation contains a File 12
file13 Set to “yes” if the evaluation contains a File 13
file23 Set to “yes” if the evaluation contains a File 23
covariance Set to “yes” if the evaluation contains File 31, File 32 or File 33
chicov Set to “yes” if the evaluation contains File 35

The XML list containing the parameters automatically extracted from the ENDF evaluation is not
sufficient to generate the input files. An additional XML file is used containing information concerning
metastable nuclei and thermal moderator data. This configuration file contains a root element
ConfigFile and three sections. If parsing one or more ENDF formatted files, a configuration file is
automatically created with some default values. The values should be reviewed before actually using
the configuration file. In the final library, the nuclei are normally identified by their ZA value and not by
the ENDF material number. This makes it necessary to use a different ID in some cases in order to avoid
duplication.

109

8.1.1.1 Special nuclei

The correct ZA value can be easily retrieved from the ENDF evaluation itself. However, it may be desired
to give a different identifier to some nuclei. The section is contained in an element with name
specialNuclei. The element contains one or more nuclei elements. The nuclei element has the
following attributes:

• endf contains the ENDF MAT number of the evaluation for which the final library ID should be
changed.

• realza contains the actual ZA value of the nucleus
• scaleza contains the ID to be used in the final library
• name label used in the SCALE standard composition library

By default, the section contains new ID value for H1 (changed to 8001001) and H2 (changed to
8001002).

8.1.1.2 Meta stable nuclei

Since the ZA value for meta-stable nuclei is the same as for the stable form, the ID in the final library
needs to be changed in order to avoid duplicate entries with the same ID value. The section is contained in
an element named metastable, which contains one or more nuclei elements. The nuclei element
as three attributes:

• endf contains the ENDF MAT number of the evaluation for which the final library ID should be
changed

• realza contains the actual ZA value of the nucleus
• scaleza contains the ID to be used in the final library

By default, an entry is created for each meta-stable nuclei contained on the ENDF tape being parsed. The
new ID is set to LISO*1000000+ZA

8.1.1.3 Thermal moderators

In the creation of the final library, thermal moderators must be treated separately, as they only contain
data in the thermal range. The data must be combined with one or more evaluation in the fast range. In
addition the final ID should depend on the thermal data, as well as the fast data connected to it. The
section is contained in an element named thermal, which contains one or more nuclei elements.
Each nuclei element has two attributes:

• endf contains the ENDF MAT number of the evaluation for which the final library ID should be
changed

• realza contains the actual ZA value of the nucleus

In addition, each nuclei element has one or more fastMat elements listing the evaluations to be used
in the fast region. Each fastMat element contains the following attributes:

• endf contains the ENDF MAT number evaluation to be used in the fast region

110

• scaleza contains the ID to be used in the final library for the combined thermal and fast data
• name specifies the name used in the SCALE standard composition library

An evaluation is recognized as a thermal moderator if File 7 is present. In this case, an entry is
automatically added. Table 16 lists the values that are automatically selected. Please note that these are
the material numbers as given in the ENDF manual. Some of the actual material numbers used in
ENDF/VI and ENDF/VII differ from this designation. Please review the automatically generated
configuration file for consistency. Comments containing the tag for each thermal and fast evaluation are
included in the configuration file and should help in this task.

Table 17. Thermal material numbers recognized (See ENDF manual for detail)

MAT
number Description Fast evaluation SCALE ID

1 Water Bound with H1 1001
2 Para Hydrogen Bound with H1 5001001
3 Ortho Hydrogen Bound with H1 4001001
7 H in ZrH Bound with H1 7001001
11 Heavy Water Bound with H2 1002
11 Para Deteurium Bound with H2 5001002
13 Ortho Deuterium Bound with H2 4001002
26 Be Bound with Be9 3004009
27 BeO Bound with Be9 5004009

Bound with O16 5008016
28 Be2C Bound with Be9 7004009

Bound with C 7006000
29 Be in BeO Bound with Be9 5004009
31 Graphite Bound with C 3006000
33 l-Methane Bound with H1 7001001
34 s-Methane Bound with H1 2001001
37 Polyethylene Bound with H1 9001001
40 Benzene Bound with h1 6001001

Bound with C 5006000
46 O in BeO Bound with O16 5008016
58 Zr in ZrH Bound with Zr 1040000

Bound with Zr90 1040090
Bound with Zr91 1040091
…

75 UO2 Bound with O16 7008016
Bound with U232 1092232
Bound with U233 1092233
…

76 UC Bound with C 8006001
 Bound with U232 1092232
 Bound with U233 1092233

111

If the ENDF material number for a thermal moderator is not found in Table 16, it is bound with an
evaluation with the same Z and A value. This may not lead to the desired result if the ZA value is not set
to a realistic value in ENDF.

8.1.2 Templates

In order to generate input files, the XML lists described previously are combined with templates in XML
format. The templates are usually part of a user template used in ExSite to automatically generate input
files. This section describes the use of the template only.

The template is an XML file containing elements instructing the parser on how to interpret the input. The
main branching elements are:

• openFile with attribute name, opens a file for writing. The name attribute contains the name of
the file. Output will only be written to files that have previously been opened. This element can
appear anywhere in the template. The element can contain an attribute newInput with values yes or
no. If the value is no, the output file is opened in append mode, otherwise a new file is created.

• closeFile with attribute name, closes a previously opened file. The name attribute contains the
name of the file. This element can appear anywhere in the template.

• writeFile with attribute name, opens a file for writing. The name attribute contains the name of
the file. The only children allowed are XML CDATA sections and text elements (see below for
more information). Any information contained in one of these child elements will be written into the
output file. This element can appear anywhere in the template. Please note that any writeFile
element needs to be closed before starting or closing any other element but a text element or a
CDATA section.

• text contains text to be written to the output file. It may contain an attribute restrict. Please
see below for more information. This element can only appear inside a writeFile element.

• loop start a loop over all evaluations. It may contain an attribute restrict. Please see below for
more information. Looping elements may be nested. The element can appear anywhere in the
templates except inside a writeFile element.

• last is an element that can appears anywhere in a loop element. It is assumed that the element
contains one or more writeFile elements which will be written to the file only if this is the last
evaluation to be processed in the parent loop element.

• first is an element similar to the last element except that its content is only used if the first
evaluation of the parent loop element is processed.

• notLast is an element that can appear anywhere in a loop element. It is assumed that the element
contains one or more writeFile elements which will be written to the file for anything but the last
evaluation to be processed in the parent loop element.

112

• notFirst is an element similar to the notLast element, except it is processed for anything but
the first evaluation to be processed in the parent loop element.

• arrayLoop with attribute value is a special loop that loops over all values listed in the value
attribute. Values are assumed to be separated by space. This loop type cannot be nested and cannot
contain any last, first, notLast or notFirst elements.

• thermalLoop loops over all fast evaluations that may be bound with the current thermal
moderator. If the evaluation is not a thermal moderator, this loop will be ignored. This loop type
cannot be nested and cannot contain any last, first, notLast or notFirst elements.

• exclude with attribute run. If the value of run is no, this section of the template is ignored.

Inside a text element or in any attribute value, the function writeData() will be substituted by values
retrieved from the XML file listing the abbreviated ENDF information. The function writeData may have
several arguments separated by commas. The first argument is always a reference to the field to be
written, and the last two arguments are always optional and contain the length of the field and the fill
character. If the first argument is any of the attribute names listed in Table 15, the value of that argument
will be substituted. For example if processing 232U, then writeData(endf) will be substituted by 9219 and
writeData(endf,6,*) will be substituted by **9219. In addition to the values listed in Table 15, the values
listed in Table 17 can also be used.

Table 18. Additional substitution values that can be used in templates

z The atomic number of the current evaluation
a The mass number of the current evaluation
chem The chemical name of the current evaluation
source The source of the library (endf, jeff, etc.). This is just an alias for nlib.
library A string representation of source which is used in some filenames
scaleid A special ID value used in the library, calculated as:

endf + 10000 * rel + 1000000 * rev
(See Table 15 for definition of endf, rel and rev.)

changedza The ZA value of the ID or the ID designated in the configuration file
thermalscaleid The same as scaleid except calculated with the endf, rel and rev number for the thermal

moderator (If requesting scaleid for a thermal moderator, the output will be the scaleid for the
first fast evaluation bound to the moderator.)

thermalEvals The number of evaluations to be used in the fast region if the current evaluation is a thermal
moderator (In all other cases it is 0.)

date The current date (The function can contain a second argument giving the desired format for the
date.)

loopindex This substitution value that can only appear inside a loop element (It is the index of the
element in the XML listing currently being processed. The element can have an additional
argument giving the offset. For example, if the current index is 2 and the offset is 60, the value
62 is printed.)

loopnumber A substitution value that can only appear inside a loop element, equal to the number of times
the content of the loop will be executed. (The element can have an additional argument giving
the offset.)

loopcount A substitution value that can only appear inside a loop element; the number of times the loop
is being processed, including the current execution. (This is different from loopindex if the

113

loop has a restrict attribute. The element can have an additional argument giving the offset.)
array_value A substitution value that can only appear inside an arrayLoop element; substituted by the

current value of the loop variable
array_number A substitution value that can only appear inside an arrayLoop element; substituted by the

current index of the array loop (The function can have an additional argument given the offset
to be added to the index. For example, if the current index is 2 and the offset is 60, the value
62 is printed.)

array_length A substitution value for the number of items in the value of the element listed as the second
argument.

In the case of a thermal moderator, the values for the fast evaluations to be bound with the moderator are
often needed in the input file. Therefore, each of the function arguments listed in Tables 15 and 17 can
have a postfix of “fast1,” “fast2” If this postfix is found, the corresponding value is retrieved not
from the current evaluation but from the first, second . . . fast evaluation to be bound with this thermal
moderator. If the current evaluation is not a thermal moderator, the postfix is ignored, and the value for
the current evaluation is substituted. The field changedza can have postfix values of thermal1, thermal2 . .
. in order to retrieve the value to use for the ID in the final library (changedzafast1, changedzafast2. . .
would retrieve the ZA value of the evaluation used in the fast region). As the number of fast evaluations
to be bound with a thermal moderator is not known while writing the template, the loop element
thermalLoop is provided. In this loop, each argument can have a further postfix “_thermNum” which
will be substituted by 1,2 . . . until all fast evaluations have been processed. For example, to list the endf
mat number and the new scale ID for all fast evaluations of a given thermal moderator, the following
snippet is used:

<writeFile name="InputFileName">

<text>For thermal moderator writeData(tag) with mat=writeData(endf) use

</text>

</writeFile>

<thermalLoop>

 <writeFile name="InputFileName">

<text> Fast: writeData(tagfast_thermalNum) with endf
mat=writeData(endffast_thermalNum) and new id of writeData(changedzafast_thermalNum)

</text>

 </writeFile>

</thermalLoop>

If preparing a coupled library, it is necessary to find a gamma evaluation associated with the current
neutron evaluation. If the XML list contains neutron evaluations and gamma evaluations, the template
parser will attempt to pair the two together based on the Z value. An evaluation is recognized as a gamma
evaluation if the incident particle is a gamma and the evaluation contains File 23 data. An evaluation is
recognized as a neutron evaluation if the incident particle is a neutron and the evaluation contains File 3
data. If an associated gamma evaluation is found, all the tags listed in Tables 15 and 17 can have a
postfix “gamma.” If the postfix is found, the corresponding value is retrieved not from the current
evaluation, but from the associated gamma evaluation. If the current evaluation is a thermal moderator,

114

then the gamma evaluation is associated with the evaluations to be used in the fast region. In this case, a
postfix of “gammathermal1,” “gammathermal2” . . . must be used.

The loop and the text element take an optional attribute restrict that selects only certain
evaluations. The restrict attribute value is a comma-separated list of restrictions to be applied. If a
restriction is prefixed with a “-” then the loop or text will only be executed for evaluations that do not
fulfill the requested property. If a restriction is prefixed with a “+” then the loop or text will only be
executed for evaluation that do fulfill the requested property. The “+” prefix is only needed if one or more
restrictions are given in a restrict argument; otherwise, “+” is assumed. If more than one restriction is
given and all restrictions are prefixed with a “+” then the body will only be executed for evaluations that
fulfill ALL of the restrictions: i.e., a logical and is assumed; otherwise a logical or is assumed. A
restriction can be constructed from all of the tags given in Tables 15 and 17. The postfix operators for
thermal moderators and associated gamma evaluations are also allowed. The restriction is created by
giving the desired tag followed by the desired value. For example “+file3(yes) +neutron(yes)” selects all
neutron evaluations excluding thermal moderators. In addition, the following shortcut restrictions are also
allowed:

• gamma restricts to neutron evaluations that have an associated gamma evaluation

• thermal restricts to thermal moderator evaluations

• metastable restricts to meta stable nuclei

• special restricts to nuclei for which the library ID is changed (These are the nuclei listed in the
specialNuclei section of the configuration file.)

• fastforthermal restricts to nuclei that are used as a fast evaluation for any of the thermal
moderators in the listing

Examples describing custom templates for ExSite are provided later in this section.

8.2 EXSITE FILES

ExSite is used to generate the XML listings described above and to process the templates. It also serves as
a GUI to read and create AMPX input files. The user input for the various AMPX modules and the
templates is described in XML formatted files. The XML files for the module input are created from input
descriptions in the module source files. The user template input is usually much simpler than for the
module input and is created by hand. This section describes the xml formats used by ExSite, concluding
with some examples of custom template files. Instructions on how to run ExSite are given in Sect. 4.

Module descriptions are given in an XML file with elements for each input parameter. The input
parameters are subdivided into groups, where the parent group is the module itself. The input parameters
are described in an element giving the name of the parameter. All input parameters can have the attributes
listed in Table 18. Additional attributes may be available depending on the type. Each input element also
can contain the elements listed in Table 19. Additional elements may be needed depending on the type of
the input parameter.

115

Table 19. Attributes available for input parameters

Name Required Possible choices Description
type yes listed below The type of the variable
required no yes

no
Indicates whether this language element is
required
Default is no.

keyword no yes
no

Indicates whether a keyword is required to
start the parameter, as in keyword=value
Default is no.

nameUsed no Value to use instead of the name if the
parameters are keyword=value (Required
when spaces are needed in the keyword; the
attribute can contain one or more values in a
space-separated list, and in this case, all
values in that list are recognized as valid
keywords.)

attachMeaning_* no If nameUsed supplies a space-separated list
of keywords, attaches different descriptions
to each of these keywords (If desired, a
corresponding attribute
attachMeaning_keyword must appear for
each keyword listed in nameUsed)

keywordSeparator

no The separator between keyword=value
Default is =

caseSensitive no yes
no

The comparison for keywords to be entered
as case sensitive.
Default is no.

before no Name of input If this input object is used, it must appear
before the indicated input object. The
indicated input object must be a required
one.

after no Name of input If this input object is used, it must appear
after the indicated input object. The
indicated input object must be a required
one

appendEol no yes
no

Used when the input must end in an end of
line
Default is no.

hide no yes
no

Used when the indicated input must be
hidden from the user
Default is no.

deprecated no yes
no

Used when the parameters are deprecated
(used in the text but not in the GUI)
Default is no.

depends no Name of the input value this input depends
on (The value can contain +, -, *, and /. In
this case it is assumed that the input
parameters contain numbers combined to
calculate the final value.

116

Table 18. Attributes available for all input parameter descriptions (continued)

Name Required Possible choices Description
compValue no Value used to compare with resulting

value if depends is set
compare no eq

ne
gt
lt

Used to compare the value of the
dependent input object to compValue:
eq: compares for equality
ne: compares that not equal
gt: converts compValue and value of the
dependent input object to a float and
compares as greater than
lt: converts compValue and value of the
dependent input object to a float and
compares as less than

postfix no A postfix to be added after the value
repeat no exsite_unlimited If exsite_unlimited, the block can be

repeated any number of times (If a
number, gives the number of times this
block repeats. Otherwise it is the name of
a valid input object. The value of this
input object is converted to a number
which gives the number of times this
block repeats. The value can contain +, -,
*, and /. In this case, it is assumed that
the input parameters contain numbers
combined to calculate the final value.)

repeatIsUpper no yes
no

Indicates that the value given in repeat is
an upper limit only

repeatAtLeastOnce no yes
no

Indicates that the value given in repeat is
an upper limit only, but the value must be
given at least once

lineLength no The allowed length of line. If -1, no line
length limit is assumed. Inherited from
parent if not set.
Default is -1.

allowComments no yes
no

Allows comments in the coding (Inherited
from parent if not set.)
Default is yes.

groupTag no A name that groups a number of input
elements into a logical group; used to
display the input parameters together in
the GUI

listPanel no yes
no

Determines how the input parameter is
displayed in the GUI if it is a group of
input parameters

automaticEnable no yes
no

If this input parameter depends on the
value of another parameter, it will be
unchecked in the GUI. If this attribute is
set to “yes,” then the input parameter will
be selected in the GUI as soon as it is
applicable

117

Table 20. Child elements available for all input descriptions.

Name Required Description
exsite_description no Relative path to an html description of the input object
exsite_default no Default value for this input object (Value must be valid

in the context of the type attribute.)
exsite_required_position

no Used when input object is required in a certain position
(Position counting starts from 0.)

exsite_summary_line no A short description used in the GUI
exsite_icon_path no Relative path to an icon that can be used to indicate this

input object in the GUI

The following values are allowed for the type attribute:

exsite_string: The input object described by this tag is assumed to be a string. It takes two additional
attributes:

• spaceAllowed, which can have values of yes and no and indicates whether the string can
contain spaces

• equalAllowed, which can have values of yes and no and indicates whether the string can
contain equal signs

exsite_flag: The input object describes a Boolean value. If the keyword is present, the Boolean value is
set to true, otherwise to false. No additional attributes or elements are available for this type.

exsite_float/exsite_integer: The input object describes a float or an integer object. No additional
attributes are available. Additional elements available are:

• exsite_max_required, which gives the upper bound for the number

• exsite_min_required, which gives the lower bound for the number

exsite_key: The input object describes a bare keyword that has different meanings depending on its value.
It is different from exsite_flag since the result value must preserve the actual value given by the
user.

exsite_boolean: An input object that describes a Boolean value. The values yes or true are both
recognized as setting the value to true. The values no or false both set the value to false. All other
values are not accepted.

exsite_file: This input object is similar to exsite_string; however, it denotes that this object is a file. The
GUI can then display this object with a file selection box. The object has several additional
attributes:

• spaceAllowed, which can have values of yes and no; indicates whether the filename can
contain spaces.

• isNewFile, which can have values of yes and no; indicates whether the input refers to an
existing file or whether it will create a new file. Based on this information, the GUI can
determine whether to display a load or save dialog.

118

• substituteDrive, which can have values of yes and no, and only takes effect if the underlying
operating system is a windows system. If set to yes, then the drive letter of the default value is
changed to the same drive where the Exsite program resides.

exsite_enum: The input describes an enumeration type of input parameter. It takes one additional
optional attribute and several required elements. The additional attribute is allowUser, and it takes
a value of yes or no. If true, users are allowed to add values in addition to choosing one of the
predefined options. The required elements are:

• enum_type with attribute type. The value of type defines which types of values are allowed
for the enumeration.

• One or more exsite_enum_option elements listing the available choices. The element contains
one additional element named exsite_description, which contains the description of this
option. The remaining text is the value of the option.

exsite_array: An input type describing an array of data. The element contains several optional attributes
and one required element. The attributes are:

• length giving the number of elements in the array. The value can take the same arguments as
the repeat attribute listed in Table 18. The default is exsite_unlimited.

• arrayStart character string indicating the start of array values. A value of “\\n” will be
substituted by an end of line character. The default is to use no start value.

• Separator gives a list of characters that separate array elements. The value “\\n” is substituted
by a new line character, “\\t” by a tab character, and “\\r” by a hard return character.

• arrayEnd is the same as arrayStart, except it denotes the end of array values. The default is to
use no end value. The array terminates after the first character string that cannot be parsed as
an array element.

• arrayMarkeRequired is used if arrayEnd and/or arrayStart are given but are not required.

• lengthAbsolute uses the absolute value stored in length to calculate the desired length of the
array.

In addition, the element takes one required element, array_type with required attribute type to
indicate the type of data to be stored in the array.

exsite_close_depend: An input value that can be used inside a group input element. It is used if group is
closed by a certain character string. In some special cases, the occurrence of this character string does
not indicate the end of the group input. This is a marker input not displayed in the GUI and depends
on the attribute values of the group of which it is a part. This element takes one required attribute
endBlockValue, giving the character string that can potentially end the group input.

exisite_group: an input element that groups together other input elements. The available attributes are
listed in Table 20.

exsite_fidas: This is a special case of exsite_group for use with fidas type input. It describes a fidas array.
The readBlockValue and readBlock attributes need to be explicitly given. Like other exsite_group
elements, it contains input elements describing the various entries into a fidas array. The input
elements can be any of the elements describing numbers of the correct type of the fidas array.

119

Table 21. Attributes available for exsite_group element

Name Required Possible Values Description
endBlock no yes

no
closeOnRequired

Indicates whether the end of the
group input is indicated by a
certain combination of characters
If closeOnRequired is selected,
then the group input is closed if all
required input elements have been
given.
Default is no.

readBlock no yes
no

Indicates whether the start of the
group is input, as indicated by a
certain combination of characters.
Default is no.

canFold no yes
no

If set to “yes.” then the group input
can be folded into the GUI.
Default is no.

readBlockValue* no If readBlock indicates that a
certain character combination
starts the group, this attribute gives
that character combination. The
value \\n is substituted by a new
line character. There can be more
than one character string that
opens the group. If so, they must
be supplied in more than one
instance of readBlockValue. Since
XML only allows unique attribute
names, substitute * with any value
to make the attribute name unique.
The default is read <groupName>.

endBlockValue* no If endBlock indicates that a certain
character combination ends the
group, this attribute gives that
character combination.
The value \\n is substituted by a
new line character. There can be
more than one character string that
ends the group. If so, they must be
supplied n more than one instance
of endBlockValue. Since XML
only allows unique attribute
names, substitute * with any value
to make the attribute name unique.
The default is end <groupName>.

matchTag no yes
no

If there is more than one value for
readBlockValue and
endBlockBalue, then ensure that
matching pairs are used. Pairs are
generated by order of appearance
in the xml file.
Default is no.

120

Table 20. Attributes available for exsite_group element (continued)

Name Required Possible Values Description
xmlOrder no yes

no
If set to “true,” the order of the
elements in the input file must be
the same order as given in the xml
description.
Default is no.

discardBlockEnd no yes
no

If set to “true,” the group is
terminated after the
endBlockValue is read. However,
the character string is not
consumed and thus is available for
parsing for the next input element.
Default is no.

noEmptyOnDiscard no yes
no

If set to “true,” a group can consist
of no input elements in the input
file. Otherwise, an empty group is
flagged as an error.
Default is yes.

closeDepends no The name of the field is defined
here if the endBlockValue is
present but does not indicate the
end of the group unless a certain
field is set (The parser will
automatically create a field of type
exsite_close_depend. This input
type needs to be defined in the xml
input description.)

closeDependCompValue

no If closeDepends is set, the value of
the field given in closeDepends
that keeps the group open

closeDependCompare

no If closeDepends is set, the means
to compare the field

8.2.1.1 Examples

The following example is the input for the compare module, which uses FIDO style input:

<?xml version="1.0" encoding="UTF-8"?>

<compare type="exsite_group" endBlock="yes" endBlockValue="\n end"

 lineLength="72" displayMode="page">

 <exsite_summary_line>MODULE TO COMPARE FUNCTIONS ON TWO TAB1 FILES

 </exsite_summary_line>

 <centrm appendEol="true" type="exsite_string" spaceAllowed="yes"

 required="yes" hide="true">

 <exsite_summary_line>Centrm parameters</exsite_summary_line>

 <exsite_required_position>0</exsite_required_position>

121

 </centrm>

 <x_1 type="exsite_group" endBlock="yes" endBlockValue="t \n"

 xmlOrder="yes" displayMode="page" required="yes">

 <exsite_required_position>1</exsite_required_position>

 <Core_Allocation type="exsite_fidas" nameUsed="Core Allocation"

 displayMode="page" readBlock="yes"

 noEmptyOnDiscard="yes" readBlockValue="-1$$">

 <ICORE hide="yes" type="exsite_integer" nameUsed="ICORE ">

 <exsite_summary_line>Number of words of

 core to allocate.</exsite_summary_line>

 <exsite_default>500000</exsite_default>

 </ICORE>

 </Core_Allocation>

 <Logical_Unit_Assignments type="exsite_fidas"

 nameUsed="Logical Unit Assignments"

 displayMode="page" readBlock="yes"

 noEmptyOnDiscard="yes" readBlockValue="0$$">

 <LOG1 type="exsite_integer" nameUsed="LOG1 ">

 <exsite_summary_line>Logical unit on which the first

 TAB1 File is located<</exsite_summary_line>

 <exsite_default>1</exsite_default>

 </LOG1>

 <LOG2 type="exsite_integer" nameUsed="LOG2 ">

 <exsite_summary_line>Logical unit on which the second

 TAB1 File is located</exsite_summary_line>

 <exsite_default>2</exsite_default>

 </LOG2>

 <LOG3 type="exsite_integer" nameUsed="LOG3 ">

 <exsite_summary_line>Logical unit where the

 difference TAB1 File </exsite_summary_line>

 <exsite_default>3</exsite_default>

 </LOG3>

 </Logical_Unit_Assignments>

122

 </x_1>

</compare>

The element compare gives the name of the module and indicates that an end block is required, and it
consists of end on the start of a new line. The centrm element is required for almost all modules. It
indicates that all input following the name of the module until the end of the line is to be read into the
input element centrm and to be hidden from the user. The input consists of one block of data terminated
by the customary “t” at the end of the fidas block. This is defined in the element named x_1. The input
consists of one fidas array (-1$$) which is described in the element named Core_Allocation. It indicates
that the fidas array start after the character string “-1$$” is found. The fidas array group closes
automatically if all children have been given. The attribute value for noEmptyOnDiscard indicates that
the group fidas array can be omitted if all default values are desired. Finally, all the input elements are
listed. They are all of type exsite_integer and need to appear in the same order as given in the xml
description.

8.2.1.2 Template files

Template files to be used in ExSite are a combination of user input descriptions and templates used to
generate input files. They consist of two sections. The first section contains an input description as used
for module input description. It contains input parameters needed to execute the template. The second part
consists of a template using a selected XML listing and the parameters supplied in the first section.

The first section is an input description for keyword-based input. In addition to the fields supplied by the
input description, the program automatically adds descriptions for:

• “evals,” an input field that takes file name of the file containing the XML listing of the abbreviated
ENDF information

• “input,” an input field that describes the name of the input file to be created

• If the input description contains a field named “neutgroups” and a field called “thermalgroups,” a
field name “iftg,” denoting the first thermal group, is automatically created.

In the template the fields of the user input are available in two ways:

• A postfix of “_user” is added to list of arguments available to the writeData function listed in

Tables 15 and 17.

• XML entities are added to the template created. XML entities can be accessed in an XML file by
using “&entity;”. Common examples are the entities normally provided for the ampersand and the
lesser than sign, “&” and “<” respectively. However, since the template in given in Exsite
template file does not have these values defined, “entity_fieldname” is used, which will be translated
to an entity reference if expanding the template.

writeData applies to the data for a given evaluation. Therefore, writeData only works inside a loop. On
the other hand, entities are available throughout the template.

In addition, if an input field of type “exsite_array” is encountered, additional user fields are created:

• fieldname_number contains the number of fields in the array

123

• fieldname_strip creates a list of the array with array markers, commas and end of line values stripped
and substituted by spaces

• fieldname_eol is the same as fieldname_strip, except instead of a space an eol is used

There are two types of ExSite templates: one that gives a template, and one that uses previously defined
templates. The later allows the user to string previously defined templates together.

Inside the root element, which can have any desired name, the first type of template has two elements:

• An element named InputParameters that contains the description for the user input. It is structured
like a module input description.

• An element named InputData which contains the template to be used.

The following example creates a tabular list of all the evaluations (line numbers are not part of the
template):

<?xml version="1.0"?>

<customTemplate>

<InputParameters>

 <table type="exsite_group" endBlock="yes" endBlockValue="\n end">

 <exsite_summary_line>Create a table of the xml
data.</exsite_summary_line>

 <centrm type="exsite_string" appendEol="true" spaceAllowed="yes"

 required="yes" hide="true">

 <exsite_summary_line>Centrm parameters</exsite_summary_line>

 <exsite_default>

 </exsite_default>

 <exsite_required_position>0</exsite_required_position>

 </centrm>

 <addgamma type="exsite_enum" required="no" keyword="yes">

 <enum_type type="exsite_string"/>

124

 <exsite_default>yes</exsite_default>

 <exsite_enum_option>yes</exsite_enum_option>

 <exsite_enum_option>no</exsite_enum_option>

 <exsite_summary_line> Do you want to list the gamma
data</exsite_summary_line>

 </addgamma>

 </table>

</InputParameters>

<InputData>

<openFile name="entity_input"/>

 <!-- add non-moderator evaluations first -->

 <writeFile name="entity_input">

<text>Tag name endf scale id yield </text>

 </writeFile>

<exclude run="entity_addgamma">

 <writeFile name="entity_input">

<text> gamma eval </text>

</writeFile>

</exclude>

 <writeFile name="entity_input">

<text>

--

</text>

 </writeFile>

125

<!-- restrict to non-moderator data -->

<loop restrict="+file3(yes) +neutron(yes) -file7(yes)">

<writeFile name="entity_input">

<text>writeData(tag,10) writeData(endf,10) writeData(changedza,10) </text>

<text restrict="AWP0(yes) file12(yes) file13(yes)"> yes </text>

<text restrict="-AWP0(yes) -file12(yes) -file13(yes)"> no </text>

<text restrict="+gamma +addgamma_user(yes)">writeData(taggamma,10) </text>

<text>

</text>

 </writeFile>

</loop>

 <!-- add moderator evaluations -->

<writeFile name="entity_input">

<text>

Tag name endf fast tag fast endf scale ID has yield </text>

</writeFile>

<exclude run="entity_addgamma">

 <writeFile name="entity_input">

<text> gamma eval </text>

</writeFile>

</exclude>

<writeFile name="entity_input">

<text>

126

</text>

 </writeFile>

<loop restrict="+file7(yes)">

<thermalLoop>

 <writeFile name="entity_input">

<text> writeData(tag,10) writeData(endf,10) </text>

<text> writeData(tagfast_thermalNum,10) writeData(endffast_thermalNum,10)
writeData(changedzathermal_thermalNum,10) </text>

<text restrict="AWP0fast_thermalNum(yes) file12fast_thermalNum(yes)
file13fast_thermalNum(yes)"> yes </text>

<text restrict="-AWP0fast_thermalNum(yes) -file12fast_thermalNum(yes) -
file13fast_thermalNum(yes)"> no </text>

<text restrict="+gammathermal_thermalNum +addgamma_user(yes)">
writeData(taggammathermal_thermalNum,10) </text>

<text>

</text>

</writeFile>

</thermalLoop>

</loop>

</InputData>

</customTemplate>

The first element (InputParameters, line 5-28) lists parameters under the user control. The user can select
whether the associated gamma evaluations should be listed. The second element (InputData, line 30-107)
lists the template. The input file is opened on line 32. Please note that the “entity_input” type of referring
to user input must be used here. The form “writeData(input_user)” will only work inside a loop. Line 35-
37 writes the first part of the title. The text elements must be enclosed in a writeFile element, and
“entity_input” type of referring to user input must be used outside a loop construct. The title should
contain a reference to the gamma evaluation only if the user requests it. This is done with the exclude

127

element in line 93-43. Inside a loop construct the more convenient restrict attribute for the text element
could have been used. The loop element in line 53-63 writes the data for non-moderator evaluations. The
restrict argument is used to restrict the loop to evaluations pertaining to incident neutrons and containing
File 3 data but no File 7 data. Lines 54–55 are used to write out quantities available for all evaluations.
Line 56 prints a yes if the evaluation contains photon production data. An evaluation contains photon
production data if AWP0 is yes or if it contains File 12 or File 13 data. Since neither of the restrict
arguments is prefixed by a “+,”evaluations are selected for which AWP0 is yes and/or which File 12
and/or File 13 exists. Line 57 prints a no if no photon production data exist. The “-” before each of the
restrict arguments should be marked. Lines 58–59 print the tag name of the associated gamma evaluation
if the user requested it and if an associated gamma evaluations exists. Lines 64–104 repeat the same
tables, but they only select thermal moderators. In order to print all associated evaluations in the fast
range, a thermalLoop construct is used in lines 88–103. The postfix “fast_thermalNum” that appears on
many of the quantities refers to the desired quantity in the evaluation to be used in the fast region. The
postfix “gammathermal_thermalNum” selects the gamma evaluation associated with the fast evaluation.

Additional examples can be found in the exsite folder, which contains templates to create all the major
library types.

8.3 GENERATING MODULE INPUT AND PDF INPUT

Input instructions for modules are automatically translated from information supplied in the file
containing the main program for a module. The comments are given in lines starting with “!!*” for
Fortran files and “*!!” for C or C++ files. All lines starting with this special comment character are
extracted and interpreted as an XML file.

128

9. INSTALLATION

The AMPX build is based on CMake from KitWare, which supports a consistent experience on LINUX,
Mac, and Windows.

AMPX requires:

• Intel Fortran/C++ 13.1 or higher
or
GNU GCC/G++/GFORTAN 4.6.1 or higher

• CMake – Platform independent build configuration

• QT 4.7 or higher

Optionally, AMPX requires LAPACK and BLAS libraries.

There are four main steps to create an AMPX installation:

1. CMake configuration creates a native build tree
2. Compilation compiles all executables and libraries
3. Optionally run test cases
4. Installation – This deploys all executables into a configuration ready for running

‘CMakeLists.txt’ files are found throughout AMPX. From the AMPX root directory, these
CMakeLists.txt files create a tree of included directories called the SOURCE TREE.

To configure a build, ‘cmake’ is called on the root CMakeLists.txt file, namely
ampx_dir/CMakeLists.txt. CMake takes the SOURCE TREE and creates a BUILD TREE. The
BUILD TREE contains or will contain the build configuration, Make files, and all compilation output
(i.e., object files, archive libraries and binary executables). Then make install in the build directory
will install the packages, and an optional ctest command will run several tests to ensure that AMPX
was built correctly.

AMPX requires QT and optionally LAPACK and BLAS routines. If these libraries reside in a known
location (i.e., installed by yum or macports [see below]), the installation procedure will automatically find
the libraries. Otherwise the location can be given at configuration time.

9.1 RECOMMENDED INSTALLATION PROCEDURE

1. Navigate to the root scale directory, where CMakeLists.txt, PackagesList.cmake and
CTestConfig.cmake are shown. This is the root of the source tree that at which CMake will be
pointed.

2. Make a build directory:
 mkdir build
 cd build
and create a cmake script in this directory called configure with content similar to:

#!/bin/bash

INSTALL_PATH=${PWD}/install

129

OPTIONS=${PWD}/../script/options_ampx_packages.cmake

cmake \

 -D SCALE_ENABLE_TESTS:BOOL="ON" \

 -D SCALE_CONFIGURE_OPTIONS_FILE:FILEPATH=${OPTIONS} \

 -D DART_TESTING_TIMEOUT:STRING=6500 \

 -D CMAKE_INSTALL_PREFIX:FILEPATH=${INSTALL_PATH} \

 -D CMAKE_BUILD_TYPE:STRING=RELEASE \

 -D CMAKE_Fortran_COMPILER:STRING=gfortran \

 -D CMAKE_CXX_COMPILER:STRING=g++ \

 -D CMAKE_C_COMPILER:STRING=gcc \

 $*

and make it executable:
 chmod u+x configure

An example script file is provided in the script directory: configure_ampx_gcc for gnu compilers
and configure_ampx_intel for intel compilers.

3. Create the build tree by running

 ./configure ../

4. Install the packages by running
 make install

and optionally run the test suite:
 ctest

5. If third party libraries are not found, the user may need to specify the path to them. For QT, add
 -D CMAKE_PREFIX_PATH=/Path_to_QT_directory/bin \

to the configure script. For lapack and blas, add:
 -D TPL_LAPACK_LIBRARIES:STRING=/Path_to_lapack_libs/lib/liblapack.so\
 -D TPL_BLAS_LIBRARIES:STRING=/Path_to_lapack_libs//lib/libblas.so\
to the configure script.

Every library and executable is a TARGET. Calling 'make' on Linux and Mac will build ALL targets. For
example, typing make x10 will only build the x10 executable.

CMAKE_Fortran_COMPILER, CMAKE_Fortran_FLAGS, CMAKE_C_COMPILER,
CMAKE_C_FLAGS, CMAKE_CXX_COMPILER, and CMAKE_CXX_FLAGS may be modified in the
cmake command invocation line to update the compilers or compiler flags to the desired settings.

9.2 MAC OSX

XCode is needed to compile AMPX on a Mac OS X computer. It is available free from the App Store. In
addition, the command line options from XCode must be installed. This can be accomplished by

130

navigating to XCode->Preferences->Downloads->Components->Command Line Tools, and clicking
“Install.’”

The latest version of macports, downloadable from http://www.macports.org, is also required.

If the rsync is blocked by a firewall, macports can be synchronized over http by changing the file
/opt/local/etc/macports/sources.conf, changing the line:

 rsync://rsync.macports.org/release/tarballs/ports.tar [default]

to

 http://www.macports.org/files/ports.tar.gz [default]

The following commands will install all necessary components from macports:

If rsync port is blocked use:

 sudo port –d sync

If rsync port is open:

 sudo port selfupdate

Regardless of rsync status, the following commands should be executed:

 sudo port install gcc48

 sudo port install qt4-mac

 sudo port install cmake

These commands upgrade the default compilers from gcc-4.2.2 to gcc-4.8.2, and they install qt4.8.4 and
cmake. Newer versions may be used if available from macports. Once the new version is installed, the
default gcc version must be selected. First the available versions are listed:

 port select --list gcc

And then one of the available ports should be selected via:

 sudo port select --set gcc mp-gcc48

Installation will then proceed in the same manner as on Linux.

http://www.macports.org/

131

10. FIDO INPUT

10.1 INTRODUCTION

The FIDO input method is specially devised to allow entering or modifying large data arrays with
minimal effort. Patterns of repetition or symmetry are used wherever possible. The FIDO system was
patterned after the input method used with the FLOCO coding system at Los Alamos and was first
applied to the DTF-II code. Since that time, numerous features requested by users have been added, a
free-field option has been developed, and the application of FIDO has spread to innumerable codes.

The data are entered in units called “arrays.” An array comprises a group of contiguous storage locations
to be filled with data at the same time. These arrays usually correspond one-to-one with FORTRAN
arrays used in the program. A group of one or more arrays read with a single call to the FIDO package
forms a “block,” and a special delimiter is required to signify the end of each block. Arrays within a block
may be read in any order with respect to each other, but an array belonging to one block must not be
shifted to another. The same array can be entered repeatedly within the same block. For example, an array
could be filled with “0” using a special option, and then a few scattered locations could be changed by
reading in a new set of data for that array. If no entries to the arrays in a block are required, the delimiter
alone satisfies the input requirement.

Three major types of input are available: fixed-field input, free-field input, and user-field input.

10.2 FIXED-FIELD INPUT

The fixed-field input option is documented here for completeness. The use of fixed-field input is NOT
recommended. Use the free-field input option documented in Sect. 10.3.

Each card is divided into six 12-column data fields, each of which is divided into three subfields. The
following outline illustrates a typical data field. The three subfields always comprise 2, 1, and 9 columns,
respectively.

To begin the first array of a block, an array originator field is placed in any field on a card:

Subfield 1: An integer array identifier <100 specifying the data array to be read in.
Subfield 2: An array-type indicator:

“$” if the array is integer data
“*” if the array is real data
“#” if the array is double-precision data

Subfield 3: Blank
Data are then placed in successive fields until the required number of entries has been accounted for.

In entering data, it is convenient to think of an “index” or “pointer” as a designator that is under the
control of the user and that specifies the position in the array into which the next data entry is to go. The
pointer is always positioned at array location #1 by entering the array originator field. The pointer
subsequently moves according to the data operator chosen. Blank fields are a special case in that they do
not cause any data modification and do not move the pointer.

132

A data field has the following form:

Subfield 1: The data numerator, an integer <100, referred to as N1 in the following discussion
Subfield 2: One of the special data operators listed below
Subfield 3: A nine-character data entry to be read in F9.0 format. It will be converted to an integer

if the array is a “$” array or if a special array operator such as Q is being used. Note
that an exponent is permissible but not required. Likewise, a decimal is permissible but
not required. If no decimal is supplied, it is assumed to be immediately to the left of the
exponent, if any; and otherwise to the right of the last column. This entry is referred to
as N3 in the following discussion.

A list of data operators and their effects on the array being entered is provided below:

“Blank” indicates a single entry of data. The data entry in the third subfield is entered in the
location indicated by the pointer, and the pointer is advanced by one. However, an entirely blank
field is ignored.
“+” or “–” indicates exponentiation. The data entry in the third field is entered and multiplied by
10+𝐾1 or 10±𝐾1,where N1 is the data numerator in the first subfield, given the sign indicated by
the data operator itself. The pointer advances by one. For cases in which an exponent is needed,
this option allows the entering of more significant figures than the blank option.
“&” has the same effect as “+.”
“R” indicates that the data entry is to be repeated N1 times. The pointer advances by N1.
“I” indicates linear interpolation. The data numerator, N1, indicates the number of interpolated
points to be supplied. The data entry in the third subfield is entered, followed by Nj interpolated
entries equally spaced between that value and the data entry found in the third subfield of the next
nonblank field. The pointer is advanced by N1 + 1. The field following an "I" field is then
processed normally according to its own operator. The "I" entry is especially valuable for
specifying a spatial mesh. In "$" arrays, interpolated values will be rounded to the nearest integer.
“L” indicates logarithmic interpolation. The effect is the same as that of "I" except that the
resulting data are evenly separated in log-space. This feature is especially convenient for
specifying an energy mesh.
“Q” is used to repeat sequences of numbers. The length of the sequence is given by the third
subfield, N3. The sequence of N3 entries is to be repeated N1 times. The pointer advances by
N1*N3. If either N1 or N3 is 0, then a sequence of N1 + N3 is repeated one time only, and the
pointer advances by N1 + N3. This feature is especially valuable for geometry specification.
The “N” option has the same effect as "Q" except that the order of the sequence is reversed each
time it is entered. This feature is valuable for the type of symmetry possessed by Sn quadrature
coefficients.
“M” has the same effect as "N" except that the sign of each entry in the sequence is reversed each
time the sequence is entered. For example, the entries 1 2 3 2M2 would be equivalent to
1 2 3 -3 -2 2 3. This option is also useful in entering quadrature coefficients.
“Z” causes N1 + N3 locations to be set at 0. The pointer is advanced by N1 + N3.
“C” causes the position of the last array entered to be printed. This is the position of the pointer
less 1. The pointer is not moved.
“O” causes the print trigger to be changed. The trigger is originally off. Successive "O" fields turn
it on and off alternately. When the trigger is on, each card image is listed as it is read.

133

“S” indicates that the pointer is to skip N1 positions, leaving those array positions unchanged. If
the third subfield is blank, the pointer is advanced by N1. If the third subfield is noy blank, that
data entry is entered following the skip, and the pointer is advanced by N1 + 1.
“A” moves the pointer to the position, N3 specified in the third subfield.
“F” fills the remainder of the array with the datum entered in the third subfield.
“E” skips over the remainder of the array. The array length criterion is always satisfied by an E,
no matter how many entries have been specified. No more entries to an array may be given
following an “E” except that data entry may be restarted with an “A.”

The reading of data to an array is terminated when a new array origin field is supplied or when the block
is terminated. If an incorrect number of positions has been filled, an error edit is given, and a flag is set
which will later abort execution of the problem. FIDO then continues with the next array if an array origin
was read. Otherwise, control is returned to the calling program.

A block termination consists of a field having “T” in the second subfield. Entries following “T” on a card
are ignored, and control is returned from FIDO to the calling program.

Comment cards can be entered within a block by placing an apostrophe (') in column 1. Then columns
2–80 will be listed, with column 2 being used for printer carriage control. Such cards have no effect on
the data array or pointer.

10.3 FREE-FIELD INPUT

With free-field input, data are written without fixed restrictions as to field and subfield size and
positioning on the card. The options used with fixed-field input are available, although some are slightly
restricted in form. In general, fewer data cards are required for a problem, the interpreting print is easier
to read, a card listing is more intelligible, the cards are easier to keypunch, and certain common keypunch
errors are tolerated without affecting the problem. Data arrays using fixed- and free-field input can be
intermingled at will within a given block,

The concept of three subfields per field is still applicable to free-field input, but if no entry for a field is
required, no space for it needs to be left. Only columns 1–72 may be used as with fixed-field input. A
field may not be split across cards.

The array originator field can begin in any position. The array identifiers and type indicators are used as
in fixed-field input. The type indicator is entered twice to designate free-field input (i.e., “$$,” “**,” or
“##”). The blank third subfield required in fixed-field input is not required. For example,

31**
indicates that array 31, a real-data array, will follow in free-field format.

Data fields may follow the array origin field immediately. The data field entries are identical to the fixed-
field entries with the following restrictions:

1. Any number of blanks may separate fields, but at least one blank must follow a third subfield entry if
one is used.

2. If both first- and second-subfield entries are used, no blanks may separate them (i.e., 24S, but not
24 S).

3. Numbers written with exponents must not have imbedded blanks (i.e., 1.0E+4, 1.0-E4, 1.0+4, or even

134

1+4, but not 1.0 E4). A zero should never be entered with an exponent. For example, 0.00-5 or
0.00E-5 will be interpreted as -5 × 10-2.

4. In third-subfield data entries, only 9 digits—including the decimal but not including the exponent
field—can be used (i.e., 123456.89E07, but not 123456.789E07).

5. The Z entry must be of the form: 738Z, not Z738 or 738 Z.

6. The + or - data operators are not needed and are not available.

7. The Q, N, and M entries are restricted: 3Q4, 1N4, M4, but not 4Q, 4N, or 4M.

10.4 USER-FIELD INPUT

If the user follows the array identifier in the array originator field with the character “U” or “V,” the input
format is to be specified by the user. If “U” is specified, the FORTRAN FORMAT to be used must be
supplied in columns 1–72 of the next card. The format must be enclosed by the usual parentheses. Then
the data for the entire array must follow on successive cards. The rules of ordinary FORTRAN input as to
exponents, blanks, etc., apply. If the array data do not fill the last card, the remainder must be left blank.

“V” has the same effect as “U” except that the format read in the last preceding “U” array is used.

10.5 CHARACTER INPUT

If the user wishes to enter character data into an array, at least three options are available. The user may
specify an arbitrary format using a “U” and reading in the format. The user may follow the array identifier
by a “/.” The next two entries into subfield 3 specify the beginning and ending indices in the array into
which data will be read. The character data are then read starting with the next data card in an 18A4
format.

Finally, the user may specify the array as a free-form “*” array and then specify the data entries as “nH”
character data, where n specifies how many characters follow H.

135

11. REFERENCES

1. N. M. Greene, J. L. Lucius, L. M. Petrie, W. E. Ford, III, J. E. White, and R. Q. Wright, AMPX,
A Modular Code System for Generating Coupled Multi-Group Neutron-Gamma Libraries from
ENDF/B, ORNL/TM-3706, Union Carbide Corp., Nucl. Div., Oak Ridge National Laboratory, March
1976.

2. N. M. Greene, J. L. Lucius, J. E. White, R. Q. Wright, C. W. Craven, Jr., and M. L. Tobias, XLACS:
A Program to Produce Weighted Multi-Group Neutron Cross-sections from ENDF/B, ORNL-TM-
3646, Union Carbide Corp., Nucl. Div., Oak Ridge National Laboratory, April 1972.

3. J. R. Knight and F. R. Mynatt MUG: A Program for Generating Multi-Group Photon Cross-sections,
CTC-17, Union Carbide Corp., Nucl. Div., Oak Ridge National Laboratory, January 1970.

4. W. E. Ford, III and D. H. Wallace, POPOP4 — A Code for Converting Gamma-Ray Spectra to
Secondary Gamma-Ray Production Cross-sections, CTC-12, Union Carbide Corp., Nucl. Div.,
Oak Ridge National Laboratory, May 1969.

5. W. W. Engle, Jr., A User’s Manual for ANISN, A One-Dimension Discrete Ordinates Transport Code
with Anisotropic Scattering, K-1693, Union Carbide Corp., Nucl. Div., Oak Ridge National
Laboratory, July 1982.

6. W. W. Engle, Jr., A User’s Manual for ANISN, A One-Dimension Discrete Ordinates Transport Code
with Anisotropic Scattering, K-1693, Union Carbide Corp., Nucl. Div., Oak Ridge National
Laboratory, July 1982.

7. M. B. Emmett, MORSE-CGA, A Monte Carlo Radiation Transport Code with Array Geometry
Capability, ORNL-6174, Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory,
April 1985.

8. N. M. Greene and C. W. Craven, Jr., XSDRN: A Discrete Ordinates Spectral Averaging Code,
ORNL/TM-2500, Union Carbide Corp., Nucl. Div., Oak Ridge National Laboratory, July 1969.

9. H. J. Kopp and D. S. Selengut, “DATATRAN—A Data-Handling Computer Language for a Large
Modular Reactor Design System,” pp. 1460–1472 in Proceedings of the International Conference on
the Utilization of Research Reactors and Reactor Mathematics and Computation, CNM-R-2, Knolls
Atomic Power Laboratory, May 1967.

10. H. J. Kopp and D. S. Selengut, “DATATRAN—A Data-Handling Computer Language for a Large
Modular Reactor Design System,” pp. 1460–1472 in Proceedings of the International Conference on
the Utilization of Research Reactors and Reactor Mathematics and Computation, CNM-R-2, Knolls
Atomic Power Laboratory, May 1967.

11. H. C. Honeck, “The JOSHUA System,” DPSTM-500, Du Pont De Nemours & Co., Savannah River
Lab., November 1969.

12. SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design,
ORNL/TM-2005/39, Version 6.1, June 2011. Available from the Radiation Safety Information
Computational Center at Oak Ridge National Laboratory as CCC-785.

13. “AMPX-II, Modular Code System for Generating Coupled Multi-Group Neutron-Gamma-Ray Cross-
Section Libraries From Data in ENDF Format,” RSIC documentation for PSR-63, Union Carbide
Corp., Nucl. Div., Oak Ridge National Laboratory, November 1978.

14. N. M. Greene, W. E. Ford, III, L. M. Petrie and J. W. Arwood, AMPX-77: A Modular Code System
for Generating Coupled Multigroup Neutron-Gamma Cross-Section Libraries from ENDF/B-IV

136

and/or ENDF/B-V, ORNL/CSD/TM-283, Martin Marietta Energy Systems, Inc., Oak Ridge National
Laboratory, October 1992.

15. N. M. Greene, W. E. Ford, III, L. M. Petrie and J. W. Arwood, AMPX-77: A Modular Code System
for Generating Coupled Multigroup Neutron-Gamma Cross-Section Libraries from ENDF/B-IV
and/or ENDF/B-V, ORNL/CSD/TM-283, Martin Marietta Energy Systems, Inc., Oak Ridge National
Laboratory, October 1992.

16. N. M. Greene, J. W. Arwood, R. Q. Wright and C. V. Parks, The LAW Library -- A Multi-Group
Cross-Section Library for Use in Radioactive Waste Analysis Calculations, ORNL/TM-12370,
Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, August 1994.

17. “ENDF/B-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files
ENDF/B-VI and ENDF/B-VII,” BNL-90365-2009, Rev. 1, CSEWG Document ENDF-102, M
Herman and A. Trkov, Ed., Brookhaven National Laboratory (2009).

18. B. T. Rearden, M. T. Sieger, S. M. Bowman, and J. P. Lefebvre, Quality Manual for the SCALE Code
System, SCALE-QAP-005, Rev. 4, Oak Ridge National Laboratory, Oak Ridge, Tenn. (2013).

19. A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors, University of
Chicago Press, 1958, pp. 508–514.

20. G. E. Hansen and W. H. Roach, Six- and Sixteen-Group Cross-sections for Fast and Intermediate
Critical Assemblies, LAMS-2534, Los Alamos Natl. Lab., September 1963.

21. C. M. Hopper and J. P. Renier, “Expanded and Applied Sixteen-Neutron-Energy-Group Cross-
Section Library,” Trans. Am. Nucl. Soc., 61, 186, 1990.

22. I. I. Bondarenko, Ed., Group Constants for Nuclear Reactor Calculations, Consultants Bureau,
New York, 1964.

23. H. C. Honeck, THERMOS, A Thermalization Transport Theory Code for Reactor Lattice
Calculations, BNL-5826, Brookhaven National Laboratory, 1961.

24. G. D. Joanou and J. S. Dudek, “Gam-II: A B3 Code for the Calculation of Fast-Neutron Spectra and
Associated Multigroup Constants,” GA-4265, General Atomic, Sept. 1963.

25. “POLIDENT: A Module for Generating Continuous-Energy Cross Sections From ENDF Resonance
Data”, M.E. Dunn and N. M. Greene, NUREG/CR-6694 and ORNL/TM-2000/035, Oak Ridge
National Laboratory (2000).

26. R. Hwang, “A Rigorous Pole Representation of Multilevel Cross-sections and Its Practical
Applications,” Nuc. Sci. Eng., 96, 192, 1987.

27. W. H. Press, W. T. Vetterling, S. A. Teukolsky and B. P. Flannery, Numerical Recipes in FORTRAN
The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.

28. R. Hwang, “A Rigorous Pole Representation of Multilevel Cross-sections and Its Practical
Applications,” Nuc. Sci. Eng., 96, 192, 1987.

29. R. E. MacFarlane and A. C. Kahler, Methods for processing ENDF/V-VII with NJOY, Nuclear Data
Sheets 111 (2010), 2739.

30. C. Kalbach and F.M. Mann, Phenomenolgy of continuous angular distributions. I. Systematic and
Parameterization, Phys. Rev. C, 23 (1981), 112.

31. C. Kalbach, Systematics of Continuous Angular Distributions: Extensions to Higher Energies, Phys.
Rev. C, 37 (1988), 2350.

137

32. O. Klein, Y. Nishina, Z. Phys. 52, 853 (1929).

33. M. E. Dunn, L. C. Leal, “Calculating Probability Tables for the Unresolved-Resonance Region Using
Monte Carlo Methods,” PHYSOR 2002 # A0107, May 2002.

34. F. J. Dyson and M. L. Mehta, “Statistical Theory of the Energy Levels of Complex Systems,”
J. Math. Phys, 4, 701 (May 1963).

35. L.C. Leal and N.M. Larson, SAMDIST: A Computer Code for Calculating Statistical Distributions
for R-Matrix Resonance Parameters, ORNL/TM-13092, Lockheed Martin Energy Research
Corporation, Oak Ridge National Laboratory, September 1995.

36. R. Hwang, “A Rigorous Pole Representation of Multilevel Cross-sections and Its Practical
Applications,” Nuc. Sci. Eng., 96, 192, 1987.

37. M. L. Williams, “Resonance Self-Shielding Methodologies in SCALE 6,” Nucl. Technol. 174, 149
(2011).

38. M. L. Williams, K. S. Kim, “The Embedded Self-Shielding Method,” Proceedings of PHYSOR 2012
– Advances in Reactor Physics – Linking Research, Industry, and Education, Knoxville, Tennessee,
April 15–20 (2012).

39. M. A. Jesse et al., “POLARIS: A New Two-Dimensional Lattice Physics Analysis Capability for the
SCALE Code System,” Proceedings of PHYSOR 2014 International Conference: The Role of Reactor
Physics toward a Sustainable Future , Kyoto, Japan, September 28–October 2 (2014).

40. B. Kochunas, et al., Overview of Development and Design of MPACT: Michigan Parallel
Characteristics Transport Code, Proc. M&C 2013, Sun Valley, ID, USA. May 5-9 (2013).

41. R. J. J. Stamm’ler and M. J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design,
Academic Press, London (1983).

42. D. Wiarda, G. Arbanas, L. Leal, M. E. Dunn, Recent Advances with the AMPX Covariance
Processing Capabilities in PUFF-IV, 2008 Workshop on Neutron Cross Section Covariances, Port
Jefferson, New York, June 24–27 (2008).

43. N.M. Larson, Updated User’s Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using
Bayes’ Equations, ORNL/TM-9179/R6 (July 2003).

44. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, “A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM Trans. Math. Soft., 16 (1990), pp. 1–17.

45. N. M. Steen, G. D. Byrne and E. M. Gelbard, “Gaussian quadrature of the Integrals.
∫ 𝑒𝑥𝑒(−𝑥2)∞
0 𝑓(𝑥)𝑑𝑥 and ∫ 𝑒𝑥𝑒(−𝑥2)𝑏

0 𝑓(𝑥)𝑑𝑥,” Mathematics of Computation, 23, 661, (1969).

46. H. Henryson II, J. Toppel and C.G. Stenberg, MC2-2: A Code to Calculate Fast Neutron Spectra and
Multigroup Cross Section, ANL-8144, Argonne National Laboratory, June 1976.

47. C. M. Mattoon, B. R. Beck, N. R. Patel, N. C. Summers, G. W. Hedstrom, Generalized Nuclear Data:
A New Structure (with Supporting Infrastructure) for Handling Nuclear Data, Nuclear Data Sheets
113(12), pp. 3145–3171 (2012).

http://dl.acm.org/citation.cfm?doid=77626.79170
http://www.sciencedirect.com/science/journal/00903752/113/12

A-1

APPENDIX A. APMX INPUT INSTRUCTIONS

A-3

APPENDIX A. AMPX INSTRUCTIONS

A-1. AJAX - MODULE TO MERGE, COLLECT, ASSEMBLE, REORDER, JOIN, COPY
SELECTED NUCLIDES FROM AMPX WINTERFACES

AJAX is a module to combine data on AMPX master or working libraries. Options are provided to allow
merging from any number of files in a manner that will allow the user to determine the final nuclide
ordering if desired.

Input Data

Block 1

-1$ Core assignment [1]
 1. NWORD number of words to allocate (50,000)

0$ Logical assignments [2]
 1. MWT logical number of new library (1)
 2. NWAX not used (0)

1$ Number of files [1]
 1. NFILE number of files from which data will be selected

Terminate Block 1 with a T.

Stack Block 2 and 3 one after the other NFILE times.

Block 2

2$ File and option selection [2]
 1. NF logical number of file considered
 1. IOPT nuclide treatment

The following choices are available:
 -N: deletes N nuclides from NF to create the new file on MWT

 0: adds all nuclides to the new file on MWT
 N: adds N nuclides from NF to create the new file on MWT

Sets with duplicate identifiers will not be entered on MWT. The
first occurrence of an identifier selects that set for the new library.

5$ Sequence number [1]
 1. SEQ sequence number to use for working library

Terminate Block 2 with a T.

Only use Block 3 if IOPT != 0.

Block 3

3$ Nuclides selected [IOPT]
 1. ID identifiers of nuclides to be added or deleted from NF
 Only used if IOPT != 0.

A-4

4$ New identifiers [IOPT]
 1. IDNEW allows changing the identifier given in the 3$ array for the new library.

Only used if IOPT > 0.

6$ Zone id to select [IOPT]
 1. ZONE zone id of the the nuclides to select. A negative value selects all (-1)

Only used if IOPT != 0.

7$ New zone identifiers [IOPT]
 1. NZONE allows changing the identifier given in the 6$ array for the new library.

(0) Only used if IOPT > 0.

Terminate Block 3 with a T.

Repeat block title optionally up to five times.

Block Title

title: title card for the AMPX working library Type: Character*72

Sample Input

0$$ 40 1$$ 3 T
2$$ 13 T
3$$ 92235 92238 94249 T
2$$ 20 T
2$$ 31 T
3$$ 100000 T

This input creates a library on logical unit 4 using data from logical units 1, 2, and 3, as follows: three
nuclides—92235, 92238, and 94249—are taken from logical unit 1; all nuclides from logical unit 2 are
copied unless they use one of the three identifiers already copied. Finally, a data set identified by 100000
is copied from logical unit 3. Please note that AJAX does not check to determine whether the commands
have been fully completed. In other words, if logical unit 1 does not have a 92235, it cannot be copied,
but the code will not produce any errors. The AJAX output, however, does list the nuclides copied and
their data sources.

Logical Unit Parameters

Variable Unit number Type Description
NF
MWT

 binary
binary

logical number of new library

 18 binary scratch
 19 binary scratch

A-5

A-2. ALPO - MODULE FOR PRODUCING ANISN LIBRARIES FROM AMPX WORKING
LIBRARIES

ALPO (ANISN Library Production Option) is a module for producing ANISN libraries from AMPX
working libraries. Several working libraries can be accessed in a given run. The ANISN library can be
produced in either binary or BCD format.

Input Data

Block 1

0$ Logical Assignments [2]
 1. MAN logical unit for the ANISN library (use a 7 when a punched card output is

desired) (20)
 2. MAX start of ANISN IDs (1)

1$ Primary Options [9]
 1. NFILE number of working libraries to be accessed (0)
 2. IHT position of the total cross section in the ANISN tables (3)
 3. IHS position of the within-group cross section in the ANISN tables (3)

IHT + IGM - IFTG + 1, where IGM is the number of neutron energy
groups; IFTG is the first thermal group

 4. ITL table length of the ANISN tables (0)
IHS + IGM + IPM - 1, where IPM is the number of gamma-ray groups

 5. MAXPL maximum order of scattering to be written on the ANISN library (20)
 6. IOPTID option to print label with each block of ANISN cross sections (0)

0: no printing
1: print data

 7. IOPT2D option to print scattering matrices (0)
0: no printing
1: print data

 8. ITRANS transport correction option (0)
 -N - truncate PN and above matrices and correct all lower
ordered within-group terms by subtracting (2l+1)*sigmaN(g->g')/(2N+1)
 0 - no transport correction
 N - replace sigmat with sigmatr = sigmaa + (1 - mu)* sigmas,
where mu is calculated by summing the Pl matrix and dividing by the P0
sum, or by 2/(3*A), when Pl is not given. The within-group term is also
adjusted.

 9. ICORE number of words to allocate (50,000)

Terminate Block 1 with a T.

Stack Block 2 and 3 one after the other NFILE times

Block 2

2$ File selection options [2]

A-6

 1. NF logical number of the working library (0)
 2. IOPT nuclide selection (0)

 -N - accepts all nuclides from the working library except the N
designated in the 3$ array below

 0, accepts all nuclides from the working library
 N - accepts 0 nuclides designated in the 3$ array below

Terminate Block 2 with a T.

Only use Block 3 if IOPT != 0.

Block 3

3$ nuclides to be selected or ignored [IOPT]
 1. NUCS nuclides to be selected or ignored (0) only used if IOPT != 0

Terminate Block 3 with a T.

Sample Input

0$$ 20 E 1$$ 1 4 10 30 3 0 0 0 500000 T
2$$ 4 5 T
3$$ 92235 92238 8016 1001 26000 T

This discussion assumes that data are being accessed from a 50 group AMPX working library on logical unit
4. Input indicates that an ANISN library on logical unit 20 should be created. The total cross section is in
position 4 in the ANISN cross section tables, which implies (since default values were not overriden using
the 1$ array) that nu times the fission cross section is in position 3, the absorption cross section is in
position 2, and the fission cross section is in position 1. Furthermore, by specifying that the within-group
scattering cross section is in position 10, only 6 upscattering terms are possible. If upscatters are found on
the working library that scatter by more than 6 groups up, those terms are “summed” into the source group
number less 6 scattering terms. This keeps the scattering matrices balanced and allows the scatter to be
put in the highest place available in the matrix. It is also specified that the “table length” is 30, which
means that the table has slots for 30-10 or 20 downscattering terms. As is the case with upscattering, if
terms are encountered which scatter down by more than 20 groups, they are added to the lowest
transfer terms available in the table. Five nuclides were selected from the working library: 235U (92235),
238U (92238), 16O (8016), 1H (1001), and Fe (26000).

Logical Unit Parameters

Variable Unit number Type Description
MAN binary logical unit for the ANISN

NF binary logical number of the working library
 14 binary scratch

A-3. BROADEN - MODULE TO DOPPLER BROADEN TAB1 FUNCTIONS

BROADEN reads data on a double or single precision binary TAB1 library, and Doppler broadens the
total, elastic-scattering, fission, first-chance fission, and capture cross sections. It writes the Doppler-
broadened data onto a binary TAB1 library. Optionally, it will Doppler broaden processes other than

A-7

those just mentioned. This code is based on two subroutines written by Dermit E. “Red” Cullen of LLNL,
called HUNKY and FUNKY. These routines use numerical integrations to perform Doppler broadening.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
INPUT= LOGPT, NENDF,

NTAP1
31 logical unit of the input TAB1 library

OUTPUT= LOGDP, NDOP,
NOUT

32 logical unit of the output TAB1 library

T= space-separated list of temperature(s) in Kelvin at which
data should be broadened

MAT= space-separated list of material identifiers (if not present,
all are Doppler broadened)

MT= space-separated list of reaction identifiers to broaden (if
not present, only default MT values are broadened)

addMT= adds the list of indicated MT values to the list of MTs
being broadened

icekeno= 1 option to also broaden 3, 20, 21 and 38
0 - do not broaden 3, 20, 21 and 38
1 - broaden 3, 20,21 and 38

outmode= 0 manner in which the output should be saved
0 - select the same mode as the input
1 - save as single precision
-1 - save as double precision

oldBroaden option to not add extra points
eps= 0.001 precision level at which the adaptive mesh should be

created

Notes

The numerical integration routines used in BROADEN were developed by Dermit E. Cullen at LLNL. A
characteristic of these routines is that they assume the input cross section is linear in energy. The module
POLIDENT constructs the cross section data on a suitable dense linear-linear mesh. In addition, the
BROADEN module will add points as needed.

Sample Input

INPUT=1 OUTPUT=2
T= 300 900 2100 MAT= 1000 2000

This input indicates that data should be read from the TAB1 library on logical unit 1, and that data should
be written to a new file on logical unit 2. The data will be Doppler broadened for temperatures of 300,
900, and 2100 Kelvin for the materials identified by 1000 and 2000.

A-8

Logical Unit Parameters

Variable Unit number Type Description
INPUT binary logical unit of the input TAB1 library

OUTPUT binary logical unit of the output TAB1 library

14 binary scratch

99 binary scratch

A-9

A-4. CADILLAC - (COMBINE ALL DATA IDENTIFIERS LISTED IN LOGICAL AMPX
COVERX- FORMAT)

CADILLAC (Combine All Data Identifiers Listed in Logical AMPX COVERX-format) is an AJAX-like
module that can be used to combine multiple covariance data files in COVERX format into a single
covariance data file. The user can change the material IDs as needed. CADILLAC reads and exports data
in a binary format native to the computing platform.

Input Data

Block Output

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
out= logical unit for final COVERX output file
directory= no Creates a contents directory of input COVERX files

without assembling an output file.
no - creates an output file
yes - creates directory and exit

Repeat block Input as often as needed.

Block Input

Block starts on first encounter of a keyword in the block.

Block terminates on encountering the next occurrence of keyword in or end.

Keyword Alternate Default Definition
in= logical unit number for input COVERX file
file= 1 old or new COVERX formatted input file

0 - old COVERX input file
1 - new COVERX input file
All COVERX files produced by the current AMPX
code system are in new COVERX format.

dec= no Dec formatted BIG_ENDIAN COVERX file
yes - old style DEC generated COVERX
file
no - not an old style DEC generated COVERX
file
all COVERX files produced by the current AMPX
code system are in the new COVERX format.

delete= space-separated list of materials to delete from input
library

A-10

Keyword Alternate Default Definition
add= space-separated list of materials to add from input

library
The following special options are available:
 add=0 selects all nuclides from “in”

 if add > 0 and a 0 is specified as the last value in
the array, all the nuclides on the input file will be
selected; however the ids explicitly specified can be
changed using the “new” array input.

new= space-separated new material ids for materials given in
add
The number of new materials must match the number
of materials given in add exactly.

secondary= space-separated list of secondary id values that will be
changed
refers to the material id in cross material covariance
matrices

matid= space-separated list of new secondary id values for
values given in secondary

Notes

 For all newly created COVERX files, file=1 and dec=no.

 There is a one-to-one correspondence between values in the “add” array and the “new” array.
There is also a one-to-one correspondence between values in “secondary” and “matid”.

 After “ in” is specified, the keywords governing the operations on “ in” must be specified prior to
entering another “in”.

 The minimum input following in specification is add=0 that specifies all nuclides from “in” will
be copied to “out”.

 The same keyword can only be entered once on a line of input. For example, the following input is
invalid:

add=id1 id2 in=33 add=id3 id4
Entering the keyword “add” twice on the same line is invalid, but it is acceptable to have two
different key words on the same line. In other words, there is no problem having the keywords “in”
and “add” on the same line.

Sample Input

=cadillac out=23
in=20 file=1 delete=92233 end
=cadillac out=24
in=23 add=0 file=1
in=22 add=9222 new=92233 file=1 secondary=9228 9427
matid=92235 94239 end

A-11

The first input deletes the mat=92233 from the COVERX file on logical unit 20 and generates a new
COVERX file on logical unit 23. The second CADILLAC input takes all materials from logical unit 23
and adds them to the new COVERX file on logical unit 24. In addition, the covariance matrices from the
COVERX file on logical unit 22 that correspond to material id 9222 are added to the new COVERX file
on logical unit 23 after first changing the material id to 92233. If cross material matrices with a second
material id of 9228 or 9427 exist, the ids for the second material are changed to 92235 or 94239,
respectively.

Logical Unit Parameters

Variable Unit number Type Description
out binary logical unit for final COVERX output file
in binary logical unit number for input COVERX file
14 binary scratch
15 binary scratch

A-12

A-5. CAMELS - MODULE TO COMPARE AMPX MASTER OR WORKING LIBRARIES

CAMELS (Compare AMPX Master Libraries) compares two cross section collections on two AMPX
master libraries (master or working). The two libraries must use the same neutron and/or gamma-ray
group structures.

Comparisons are made for the 1-D data (group-averaged cross sections), Bondarenko factors, and the 2-D
data (group-to-group transfer matrices). There is no requirement that the two libraries use the same
ordering in the manner in which data are written. CAMELS keys on the identifiers of all classes of data
and makes comparisons when it finds matches. The two libraries to be compared have to be of the same
type.

The primary output from CAMELS is a file written in the AMPX master or working library format,
depending on the input, containing values defined by (A-B)/B, where A represents the values on the first
library, and B respresents the values on the second library. The second library is the reference library, and
the values are the relative difference of the values on the first library relative to the reference library. Since
the output is in the AMPX master or working format, it can be listed, plotted, etc., using any appropriate
AMPX utility module, such as the PALEALE module.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
log1= in1 1 logical unit of the first AMPX master/working library
log2= in2 2 logical unit of the second AMPX master/working library
log3= out 3 logical unit of the output AMPX master/working library
eps= 1e-5 the precision to compare
worker If present, use to compare working libraries; otherwise

master libraries are compared.
print= data printing options

1dn - print 1-D neutron differences
1dg - print 1-D gamma differences
2dn - print 2-D neutron differences or transfer matrices
2dy - print 2-D yield matrices differences
2dg - print 2-D gamma matrices differences bond - print
Bondarenko data differences

A-13

Sample Input

log1=91 log2=92 eps=1e-3 print=1dn print=2dn print=bond

The example requests comparing the two data collections located on logical units 92 and 92. The
differences with absolute values greater than 0.001 (0.1%) will be written on logical unit 3 in the AMPX
master library format. In addition, all differences for 1-D and 2-D neutron data and for Bondarenko factors
will be written on the screen.

Logical Unit Parameters

Variable Unit number Type Description
log1 binary logical unit of the first AMPX master/working

library
log2 binary logical unit of the second AMPX

master/working library
log3 binary logical unit of the output AMPX

master/working library

A-14

A-6. CEEXTRACT - EXTRACT DATA OUT OF A CE LIBRARY

CEEXTRACT allows for extracting 1-D, kinematic data and probability tables in a format suitable for use
in PLATINUM to make a new library. The 1-D data contain collision cross sections, which PLATINUM will
override. The collision cross section data can be deleted from the TAB1 formatted files prior to a
reprocessing with PLATINUM using module ZEST.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
zero= the prefix of the library file
dir= the directory containing the library files
1d= 0 unit of the file in which to save the 1-D data

(If less or equal to zero, 1-D data are not exported)
2df= 0 unit of the file in which to save the 2-D temperature-

independent data
(If less or equal to zero, 2-D data are not exported.)

2dt= 0 unit of the file in which to save the 2-D temperature-
dependent data
(If less or equal to zero, 2-D data are not exported.)

prob= 0 unit of the file in which to save the probability table data
(If less or equal to zero, probability table data are not
exported.)

unit = 60 unit on which to read the CE library files

A-15

A-7. CHARMIN - MODULE TO CONVERT TAB1 LIBRARIES FROM SINGLE TO
DOUBLE PRECISION, TO TEXT, OR FROM ANY OF THESE FORMATS TO ANY OF
THE OTHERS

CHARMIN (Change and Re-Make INput File) is a code that converts between different TAB1-file
formats.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
input= inpu inp in i 31 logical unit of input file
output= outpu outp out

ou o
32 logical unit of output file

Select one of these
 single Input file is single precision binary.
 double Input file is double precision binary.
 fido Input file is in FIDO format.
 cen Input file contains a CENTRM flux.
to t to Keywords before this flag are for the input file. After this

flag they are for the output file.
Select one of these
 single Output file is single precision binary.
 double Output file is double precision binary.
 bcd BCD Tab1 format
 ploth XY columns with headers
 plot XY columns without headers
 fido output file in FIDO format
mat= material number to use if reading centrm flux data
mt= reaction number to use if reading centrm flux data

Repeat block zone descriptions as often as needed

Block Zone descriptions

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
zone= zone which to read
ztemp= temperature for the zone
sig0= background cross section value for the zone
za_l= lowest value of za for which to use this flux
za_h= highest value of za for which to use this flux

A-16

Sample Input

INPUT=1 OUTPUT=2 SINGLE TO DOUBLE

This indicates that the single precision binary file on logical unit 1 should be read and a double
precision file on logical unit 2 should be created.

Logical Unit Parameters

Variable Unit number Type Description
INPUT
OUTPUT

 binary
BCD or binary

A-17

A-8. CLAROL - A MODULE TO REPLACE CROSS SECTIONS ON AN AMPX MASTER
INTERFACE

CLAROL (Correct Libraries and Replace Old Labels) is a module that replaces or adds data in an AMPX
master library at the lowest level (e.g., it can replace individual elements in either 1-D or transfer arrays). It
also has provisions for modifying entries in the table of contents on a master library and for overriding the
title cards associated with each data set on a master library. Because this module operates at such a detailed
level, it is recommended that the user be familiar with the idiosyncrasies of the AMPX master interface
format before attempting to use CLAROL.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= logical unit of the input master/working library
out= logical unit of the output master/working library
worker If present, working library should be corrected.
nototal If present, totals are not summed again.
noratio If present, mt=1007 is not renormalized.

Otherwise, for non-moderator materials, the free gas
scattering matrix (MT=1007) is normalized to MT=2.
For moderators, the elastic cross section (MT=2) is
substituted by the sum value of the thermal scattering
matrix. Moderators have a nonzero value in id=46.

noup If present, scattering matrices are not corrected for
upscatter.

nobond If present, Bondarenko data are not renormalized to
resummed totals.
Not currently used, as Bondarenko data are not updated.

nosmall If present, small values in 1-D are retained.
noyield If present, yield matrices are not converted to units of

yield.
nocompact If present, scattering matrices are not compacted, and

small values in the scattering matrix are set to zero, If a
l>0 matrix has a non-zero term, where the l=0 matrix
does not, it is set to zero

smallcut= 1.0d-12 cut-off value to set 1-D and scattering matrix values to
zero
If nosmall is not set, all 1-D cross section smaller than
smallcut are set to zero. If nocompact is not set, all
scattering matrix elements smaller than smallcut will be
set to zero.

Repeat block Data as often as needed.

A-18

Block Data

Block starts on first encounter of a keyword in the block.

Block terminates on encountering the next occurrence of keyword end or neutron or gamma or yield or
resonance or bondarenko or 1dn or 2dn or 1dg or 2dg or 2dy or sumn or sumg or title or end.

Keyword Alternate Default Definition
Select one of these
 1dn lists changes for 1-D neutron data
 1dg lists changes for 1-D gamma data
 2dn lists changes for 2-D neutron data
 2dg lists changes for 2-D gamma data
 2dy lists changes for yield matrices
 bond lists change for bondarenko factors
 refbond lists change for reference bondarenko cross sections.
 trans lists changes for transfer matrix
 title lists an new title for the indicated nuclide
 sumn additional user sum rules for neutron data
 sumg additional user sum rules for gamma data
ido= the id of the old set

If ido and idn are given and no records for idn exist, ido
is copied and renamed to idn.

idn= the id of the new set
See ido. If idn is not given, the value of ido is used.

mt= the reaction for which to change the data
nf= the first group for which to apply changes

If changing a scattering matrix, this is the source group
nl= the last group for which to apply changes

If changing a scattering matrix, this is the source group
nsink= the sink group if changing scattering matrix data
lval= the order of the matrix to update if changing scattering

data
temp= the temperature of the matrix to update
data= values or text listing the desired changes

The data section is enclosed between < and > signs.
Multiple lines are allowed. For 1dn, 1dg, 2dn, 2dg,
2dy and trans, FIDO style array input is allowed.

Logical Unit Parameters

Variable Unit number Type Description
in

out

 binary

binary

logical unit of the input master/
working library
logical unit of the output master/working
library

A-19

A-9. COGNAC - CONVERSION OPERATIONS FOR GROUP-DEPENDENT NUCLIDES IN
AMPX COVERX-FORMAT

COGNAC (Conversion Operations for Group-Dependent Nuclides in AMPX COVERX-format) is a
module used to convert COVERX formatted libraries from bcd to binary and vice versa.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= logical unit number for input COVERX file
out= logical unit number for output COVERX file
Select one of these
 bcd Input file is in ASCII format.
 binary Input file is binary.
to t to Keywords before this flag are for the input file. After

this flag, they are for the output file.
Select one of these
 bcd Output file is in ASCII format.
 binary Output file is binary.
new= no process an input binary COVERX in the new file format

yes - characters were printed as characters
no - characters were printed as floats
All files produced with the current AMPX code system
are of type new

dec= no processing old COVERX binary file generated on a
DEC Alpha in BIG_ENDIAN format
yes - DEC Alpha in BIG_ENDIAN format
no - Not DEC Alpha in BIG_ENDIAN format
dec=yes should only need to be specified with the
option new=no. All files produced with the current
AMPX code system are of type new

strip no If present, strip undesired reaction values.
If present, only retain covariances matrices where the mt
values are 1, 2, 4, 16, 18, 101, 102, 103, 104,
105, 106, 107, 452, 1018.

Logical Unit Parameters

Variable Unit number Type Description
in

out

 BCD or binary

BCD or binary

logical unit number for input
COVERX file
logical unit number for output
COVERX file

A-20

A-10. COMBINE - ADD, SUBTRACT, MULTIPLY OR DIVIDE TAB1 FILES

COMBINE is used to add, subtract, multiply or divide TAB1 files.

Input Data

Block Specifications

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in1= 31 input TAB1 file
in2= 32 input TAB1 file
out= 33 output TAB1 file
con= 1.0 constant with which to multiply data in in2
option= 1 procedure to perform

add - add the two tab1 files
sub - subtract in2 from in2
mul - multiply the two tab1 files
div - divide in1 by in2

Logical Unit Parameters

Variable Unit number Type Description
out

in in
 binary

binary
binary

output TAB1 file

A-21

A-11. COMPARE - MODULE TO COMPARE FUNCTIONS ON TWO TAB1 FILES

COMPARE is a module to read two TAB1-formatted single precision binary files and compare the
functions with the same identifiers (MAT, MF, MT). It writes a TAB1 single precision binary file that
contains difference functions, (Function 1 - Function 2) / Function 2, identified by the original identifiers.
This module can be used to compare two pointwise cross section files. For example, COMPARE can be
used to compare point cross sections from AMPX with point cross sections generated by NJOY. Note that
the AMPX module EXTRACT would be used to convert an NJOY-PENDF to TAB1 format.
Subsequently, COMPARE would be used to compare the two TAB1 files.

Input Data

Block 1

-1$ Core allocation [1]
 1. ICORE number of words of core to allocate (500000)

0$ Logical unit assignments [3]
 1. LOG1 logical unit on which the first TAB1 file is located (1)
 2. LOG2 logical unit on which the second TAB1 file is located (2)
 3. LOG3 logical unit where the difference TAB1 file will be written (3)

Terminate Block 1 with a T.

Sample Input

0$$ 23 24 25 T

This input indicates that the identical functions on logical units 23 and 24 should be compared and the
difference file should be written in the TAB1 format on logical unit 25.

Logical Unit Parameters

Variable Unit number Type Description
LOG1

LOG2

 binary

binary

logical unit on which the first

TAB1 file is located in the logical unit on
which the second TAB1 file is located

LOG3 binary logical unit where the difference TAB1 file
will be written

A-22

A-12. COMPRESS - MODULE TO COMPRESS FUNCTIONS WRITTEN IN TAB1 FORMAT

COMPRESS is a module which reads a point TAB1 data file written by a program such as POLIDENT
and reduces the number of points in the functions on the file by eliminating points which can be
interpolated to within a user-specified tolerance. For example, POLIDENT typically generated functions
that are accurate (in terms of generating a function according to ENDF/B specifications, not according to
physical correctness) to within 0.1%. Many applications may only need functions that are accurate to a
much coarser tolerance, such as 1%. COMPRESS allows this operation to be performed.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
LOGIN= IN 1 logical unit of input file
LOGOUT= OUT 2 logical unit of output file
EPS= tolerance to which points are tested to see if they can be

eliminated
Note that EPS is the relative difference, (A-B)/A,
not the percentage difference. A value of 0.01 is
equivalent to 1%.

Sample Input

IN=1 OUT=2 EPS=0.005 END

This input incicates that data should be read from the TAB1 file on logical unit 1 and that a TAB1 file
should be written on logical unit 2 with functions accurate to within 0.5% of the original ones.

Logical Unit Parameters

Variable Unit number Type Description
LOGIN
LOGOUT

 binary
binary

logical unit of input file
logical unit of output file

A-23

A-13. COVCOMP - COMPARE TWO COVERX FILE OR ADD COVERX FILES
ACCORDING TO A GIVEN PERCENTAGE

CPVCOMP compares two COVERX files or adds/subtracts COVERX file data. If comparing, the
program compares the files and writes the differences into a new COVERX formatted file. In addition, it
writes summary information to the screen.

Input Data

Block Keyword-Based Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= space-separated list of input file logical units

If negative, file is assumed to be binary.
perc= Space-separated list of percentages associated with those

units
If not given, 1 is assumed for all input matrices. It is
only used if adding covariance matrices.

fac= space-separated list of factors to apply to covariance
If not given, 1 is assumed. This is only useful when
subtracting covariances matrices. If negative
percentages are given, cross section data are subtracted,
but covariance data are added. It is only used if adding
covariance matrices.

out= 3 Logical unit of the output COVERX file
nytpe= -1 Type of the output COVERX file

-1 - Use the type used in the first COVERX file
1 - Covariance matrix, standard deviation
2 - Relative covariance matrix and deviation
3 - Correlation matrix, standard deviation

eps= 1e-5 Precision to which to compare COVERX file data.
nullVal= -9999 Value to substitute if matrix not found.
all If comparing two COVERX files, print all differences.
convert If comparing two COVERX files, always convert to

ntype=1.
skip Skip cross section data and matrices unless on all

COVERX files.
add If present, add the covariance matrices.

Notes

File format for the output file is a COVERX file with the following features:

 All cross section, uncertainties and covariance data are written out as abs(a1-a2)/abs(a1), where a1
is the value in file 1, and a2 is the value in file 2. If a1 is null, the value abs(a1-a2) is used instead.

 If a cross section or matrix does exist in one file but not the other, -9999 is written for all the values.

A-24

 If the group structures in the two files do not agree then the files cannot be compared. In this case,
the COVERX file does contain a header but contains 0 cross section and covariance matrix data.

Sample Input

in=1 -2 out=-3 eps=1e-5 all

The BCD formatted COVERX files on logical units 1 and the binary COVERX file on unit 2 are
compared, and differences are printed in binary format on logical unit 3. In addition, all differences larger
than 1e-5 are printed to the screen

Logical Unit Parameters

Variable Unit number Type Description
log1
log2 out

 BCD or binary
BCD or binary
BCD or binary logical unit of the output COVERX file

A-25

A-14. COVCONV - PROGRAM TO CONVERT FILE 32 RESONANCE DATA INTO FILE 33
FORMAT

The program takes a COVERX file and converts the data pertaining to the File 32 information into the
File 33 format. The group structure of the COVERX file is expected to contain all energy range end
points from File 32. In addition, File 33 cannot contain any covariance information that overlaps with the
covariance information in File 32.

Input Data

Block 1

0$ Logical unit assignment [8]
 1. cov logical unit for the coverx file containing File 32 covariance data (-1)

If negative, file is assumed to be binary.
 2. endf logical unit for endf (2)

any file 33 data in this file will be combined with the newly created File
33 data

 3. inmode ENDF library format (2)
1: binary
2: BCD

 4. mat material identifier
 5. out logical unit for output of new File 33 data (2)
 6. outmo ENDF library format for output file (2)

1: binary
2: BCD

 7. unres option for whether unresolved parameter matrix get translated (0)
0: yes
1: no

 8. lty0 specifies how to treat lty=0 sections (0)
0: Do not allow to extend lty=0. Any energy of an overlapping
lty=0 section will be automatically adjusted
1: Allow to extend lty=0

Terminate Block 1 with a T.

Logical Unit Parameters

Variable Unit number Type Description
cov BCD or binary logical unit for the coverx file

containing File 32 covariance data
endf BCD or binary logical unit for endf
out BCD or binary logical unit for output of new File 33 data

A-26

A-15. COVERR - PROGRAM TO CONVERT COVERX FILES TO ERRORR COVARIANCE
FILES

COVERR is a program to convert coverx files to errorr covariance files. It can only convert COVERX files
that contain one nuclide. Module CADILLAC should be used to select the desired material prior to
running COVERR if the coverx formatted file contains more than one nuclide.

Input Data

Block 1

0$ Logical unit assignment [2]
 1. log1 logical unit for the first COVERX file (1)

If negative, file is assumed to be binary.
 2. out logical unit for errorr file (2)
 3. mat ENDF mat number to use in errorr file (0)

1* ENDF header information [2]
 1. za ZA value for the nucleus (0)

This is the value written in the BOXER file.
 2. awr mass ratio for the nucleus (0)

This is the value written in the BOXER file.

Terminate Block 1 with a T.

Logical Unit Parameters

Variable Unit number Type Description
log1

out

 BCD or binary

BCD

Logical unit for the first coverx
file

Logical unit for errorr file

A-27

A-16. FABULOUS_URR - MODULE TO PRODUCE BONDARENKO FACTOR TABLES

FABULOUS is a module that produces full-range Bondarenko factor tables from ENDF/B evaluations. It
does not read the ENDF/B evaluation directly, but instead uses Doppler-broadened point data produced by
modules POLIDENT and BROADEN. If the evaluation contains unresolved resonance data, the
unresolved point data must be created at the desired temperatures and background values by module
PRUDE if factors from statistical integrals are desired. Alternatively, probability tables generated by PURM
and PURM_UP can also be used in the URRR. In order to produce infinite dilute cross section data
consistent with the 1-D neutron data, an AMPX master library containing group-averaged neutron cross
section data is required. FABULOUS does not perform any Doppler broadening; instead it assumes that
all point data have been created at the desired temperatures.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
out= 1 unit for the output file containing the Bondarenko factors
in= 19 unit for the master containing the 1-D and 2-D neutron data
idlib= identifier of the nuclide on the input master library
idpoint= identifier of the material for the point data, the probability tables

and the kinematic data
matwt= 99 material identifier of the flux data
mtwt= 2099 reaction identifier of the flux data
flux= 46 unit for the file containing the flux data
resol= unit for the file containing the temperature dependent point-wise

data
This file contains all point-wise data in broadened to the desired
temperatures. If no file is given, Bondarenko factors will not be
calculated. This can be used to calculate f-factors in the URR only.

urrpoint= unit for the file containing the temperature and background
dependent point-wise data in the URR This file contains all point-
wise data in broadened to the desired temperatures and calculated
at the desired background cross section values.

urrprob= unit for the file containing the temperature dependent probability
tables in the URR

kin= unit for the file containing point-wise kinematic data This file is
needed if removal f-factor values are desired

temps= space-separated list of temperature(s) in Kelvin at which f-factors
should be generated

sig0= space-separated list of background cross section values at which f-
factors should be generated

mts= space-separated list of additional reactions at which f-factors
should be generated
By default f-factors are generated for mt=1, 2, 18,
102, 1007, 1008, 2022 provided the required data.
are available. If additional reactions are desired, they can be added
in this array.

A-28

A-17. FABULOUS - MODULE TO PRODUCE BONDARENKO FACTOR TABLES

FABULOUS is a module that produces full-range Bondarenko factor tables from ENDF/B evaluations. It
does not read the ENDF/B evaluation directly, but instead uses Doppler-broadened point data produced by
modules POLIDENT and BROADEN. If the evaluation contains unresolved resonance data, the
unresolved point data must be created at the desired temperatures and background values by module
PRUDE. In order to produce infinite dilute cross section data consistent with the 1-D neutron data, it is
strongly advised to supply an AMPX master library containing group-averaged neutron cross section data.
FABULOUS does not perform any Doppler broadening; instead it assumes that all point data have been
created at the desired temperatures and will terminate otherwise.

Input Data

Block 1

TITLE: Title to describe the Bondarenko factor set Type: Character*72

-1$ Core allocation [1]
 1. ICORE number of words of core to allocate (500,000)

0$ Logical unit assignments [4]
 1. MMT logical unit of the AMPX master library (1)
 2. MXS logical unit of the Doppler-broadened point data file (31)
 3. MWS logical unit of the Weighting Spectrum (46)
 4. MUN logical unit of the unresolved data from PRUDE (0)

1$ Primary parameters [5]
 1. IDSET identifier of the Bondarenko factors in the master library
 2. MAT material identifier of the nuclide to be processed
 3. NTEMP number of temperatures in the Bondarenko factor tables
 4. NSIG0 number of sig0-values in the Bondarenko factor tables
 5. IGM number of neutron energy groups

2$ Weight function selection parameters [2]
 1. MATWT the MAT number for the weighting function
 2. MTWT the MT number for the weighting function

3$ Additional options [11]
 1. NEXTRA number of extra cross sections for which Bondarenko factors are to be

made (0)
By default, Bondarenko factors for total, elastic scattering, fission, and
capture will be produced.

 2. LIST1D option to print the 1-D cross section (0)
 0: no
 1: yes
 3. LISTBF option to print the Bondarenko factors (0)
 0: no
 1: yes
 4. IDEBUG option to print debug information (0)
 0: no
 1: yes

A-29

 5. master unit of master to use for reference cross section data if desired (0).
If not given, the group-averaged data calculated from the point data are
used.

 6. masterID Nuclide id on master to use as reference cross section (MAT)
 7. moderator Option to select to indicate whether this a moderator (0)
 0: no
 1: yes
 For a moderator, the Bondarenko factors in the thermal range are set to 1.
 8. iftg position of first thermal group (0)
 9. IOPT5 not used (0)
 11. IOPT7 not used (0)
 19. IOPT6 not used (0)

4* Energy range vver which Bondarenko factors are generated [2]
 1. ELO lower energy of range (1e-5)
 2. EHO upper energy of range (2e7)

5* Floating point parameters [2]
 1. AWR mass ratio for nuclide
 2. EPS accuracy to which integration is to be converged (0.0001)

Terminate Block 1 with a T.

Block 5

7* Energy group limits [IGM+1]
 1. IGMS energy group limits

The boundaries are not needed if a standard AMPX group structure is
used. Enter values high to low in energy in eV

8* Temperatures [NTEMP]
 1. TEMPS temperatures at which Bondarenko factors are desired

9* Sig0s [NSIG0]
 1. SIG0S Sig0 values at which Bondarenko factors are desired

10$ EXTRA_CROSS [NEXTRA]
 1. extras extra cross sections for which to generate Bondarenko data

Terminate Block 5 with a T.

Sample Input

0$$ 1 31 46 32 1$$ 1000 1395 3 8 238 2$$ 8000 99
5** 235.0 E T
8** 300 900 2100
9** 1.0E8 1.0E5 1.0E4 1.0E3 1.0E2 10.0 1.0 1.0E-6
T

This input indicates that a master library should be writtenon logical unit 1, point data should be read on
logical unit 31, a weighting function should be read in TAB1 format on logical unit 46, and point
unresolved resonance data should be read on logical unit 32. The tables included on the AMPX master

A-30

library will be identified by 1000; the MAT number is 1395; Bondarenko factors are to be produced at
three temperatures and eight values of the background cross section. The mass ratio is 235.0. The
temperatures are 300, 900, and 2100 K. The background cross sections are 1.0E8, 1.0E5,......1.0E-6. (Note
that the group structure for 238 groups is not specified since it is a standard AMPX group structure and
will be automatically accessed).

Logical Unit Parameters

Variable Unit number Type Description
MMT binary logical unit of the AMPX master library
MXS binary logical unit of the Doppler-broadened point

data file
MWS binary logical unit of the weighting spectrum
MUN binary logical unit of the unresolved data from

PRUDE
 77 binary Scratch

A-31

A-18. FILTER - SELECT SPECIFIC DATA FROM A MASTER OF WORKING LIBRARY

FILTER allows for selection of a specific data type from a master or working library.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
work processes a working library

If present, a working library is processed
in= 1 logical unit of the input library
out= 2 logical unit of the output library

Repeat block data as often as needed.

Block Data

Block starts on first encounter of a keyword in the block.

Block terminates on encountering the next occurrence of keyword end or neutron or gamma or yield or
resonance or bondarenko or 1dn or 2dn or 1dg or 2dg or 2dy or end

Keyword Alternate Default Definition
Select one of these
 NEUTRON includes all neutron data
 GAMMA includes all gamma-ray data
 YIELD includes gamma-ray yield data
 RESONANCE includes resolved resonance parameters
 BONDARENKO includes Bondarenko factor data
 1DN includes 1-D neutron data
 2DN includes neutron scattering matrices
 1DG includes 1-D photon data
 2DG includes photon scattering matrices
 2DY includes photon production matrices
mt= List of reaction values to include or exclude

If all mt values are positive, the listed mt values will be selected
from the partial library and added to the new library. If all mt values
are negative, the listed mt values are excluded from the new library.

Notes

Data selected in the data block will only be included in the new library if they are present on the old
library. If processing a working library, either 2dn or 2dg will select the transfer matrix.

A-32

Logical Unit Parameters

Variable Unit number Type Description
IN
OUT

 BCD
binary

A-33

A-19. FUNCCALC - CALCULATE ARBITRARY FUNCTION

FUNCCALC calculates an arbitrary function using the data given on a tab1-formatted data file. The
function is calculated using up to three sets of (mat,mt) values from the tab1-formatted data file. The
(mat,mt) values are assumed to be unique. The module PICKEZE can be used to select the desired sets.
These sets are denoted as function values 1,2, or 3 below. Values are created over the range el to eh using
as many points as needed to create the function up to precision eps.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= 10 logical unit of the input library
out= 11 logical unit of the output library
el= 1e-5 lower limit of the function to create
eh= 2e7 upper limit of the function to create
eps= 1e-4 precision to which to create the function
id1= 99 material id of the function to create
id2= 1099 reaction id of the function to create

Repeat Block Command as often as needed

Block Command

Block starts on first encounter of a keyword in the block.

Block terminates on encountering the next occurrence of keyword com or end or mat

Keyword Alternate Default Definition
com= calculation to perform

vr - sets register ireg to value in creg
sr - sets register ireg to function value at creg
ar - adds value in register creg to value in register ireg
and stores in ireg
mr - multiplies value in register creg with value in register ireg and
stores in ireg
dr - divides value in register ireg by value in register creg and
stores in ireg
cr - sets ireg to 0
er - takes exponential of register ireg and stores in ireg
lr - takes logarithm of register ireg and stores in ireg
sv - takes the value in register ireg as the final function value

creg= register name, see description for com
ireg= register name, see description for com

A-34

Repeat block functions up to 3 times.

Block Functions

Block starts on first encounter of a keyword in the block.

Block terminates on encountering the next occurrence of keyword mat or end or com.

Keyword Alternate Default Definition
mat= Material value of function to access on the tab1 formatted file
mt= Reaction value of function to access on the tab1 formatted file

Sample Input

in=10 out=20 id1=99 id2=1099
mat=9237 mt=18 mat=9347 mt=1 mat=99 mt=2099 com=sr ireg=1 creg=1
com=sr ireg=2 creg=2 com=sr ireg=3 creg=3 com=mr ireg=1 creg=2 com=vr
ireg=4 creg=1e10 com=ar ireg=3 creg=4 com=dr
ireg=1 creg=3 com=sv

Load the cross section for (9237,18) in function 1, (9347,1) in function 2 and the flux (99,2099) in function.

3. For each point to be calculated, the registers are filled as follows:

1. Load (9237,18) or function 1 into register 1.
2. Load (9437,1) or function 2 into register 2.
3. Load (99,1099) or function 2 into register 3.
4. Multiply register 1 by register 2 and store in register 1.
5. Store a user supplied value of 1e10 in register 4.
6. Add register 3 and register 4 and store in register 3.
7. Divide register 1 by register 3 and store in register 1.
8. Save the value in register 1 as the final function value.

A-35

A-20. IRFFACHOMO - MODULE TO PRODUCE HOMOGENOUS F-FACTORS

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
out= 77 unit for the output file containing the final Bondarenko factors
in= 78 unit for the master containing the 1-D and 2-D neutron data
fnuc= identifier of the resonance nuclide to use
bnuc= identifier of the background nuclide to use
dens= density value to use for the resonance nuclide in the infinite

medium calculation
ehres= upper limit of the RR of the resonance nuclide
bcut= 1e-4 lowest possible density for the background nuclide
low= 0 lowest group for which to generate homogenous f- factors

If 0, the group containing the upper end of the RR is selected
high= 0 highest group for which to generate homogenous f- factors

If 0, the last group is selected

A-36

A-21. IRFFACTOR - MODULE TO CALCULATE INTERMEDIATE RESONANCE F-
FACTORS BASED ON HETERO CELLS

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= the unit number of the input cross section library
out= the unit number of the output cross section library
fnuc= resonance absorber nuclide for which to calculate the ffactors
mopt= 1 option for treating moderator XSs (see parameter ircalc in

I_Crawdius input)
0 - include energy-dep PW XS's [standard CENTRM
lib data]
1 - treat as IR moderator => no abs.; elastic=lambda*sigp
2 - treat as IR absorber => has abs.; elas=lambda*sigp;
tot=abs+elas]

absopt= 0 option for treating absorber lam*sigp (see parameter ircalc in
I_Crawdius input)
0 - do NOT include absorber lambda*sigp in background XS]
1 - include absorber lambda*sigp in background XS]

medit= 0 option for treating moderator XSs (see parameter ircalc in
I_Crawdius input)
0 - no edits
1 - edit background XS's obtained for cells
2 - also edit final f-factors]

nterp= 1 interpolation method for f-factors
0 - Segev interpolation
1 - Spline interpolation taken from GSL TPL

check= no If yes, only perform checking; if no, perform full execution
yes - input checked and background XS values are edited if medit
> 0
no - input not checked

essm= yes yes - background XS is computed using essm method
no - Bonami background XS is used
yes - the background XS is computed using essm method
no - use Bonami background XS

iter= yes yes - inner iterations are performed in the computation of essm
background XS
yes - essm background XS is computed using inner iterations in
MG flux calc)
no - essm background XS is computed using NO
inner iterations (=> within grp XS=0)

cut= 1e-9 lower cut-off value for the density of background nuclide
bcut= 1e-5 lower cut-off value for f-factors (Values will be set to previous

sig0 value.)
elow= 1e-3 lowest energy for which to calculate f-factors
ehigh= 2e+5 highest energy for which to calculate f-factors

A-37

Keyword Alternate Default Definition
If zero, the highest energy of the input master is used.

ehres= 0.0 upper energy of the resolved resonance range
A value of 0 indicates that energy ehigh is to be used as upper
energy bound.

removal= yes options for computing within-group scatter
f-factors
yes - add removal f-factors
no - do not add removal f-factors

irmt= 2000 mt value for the lambda factors
cellfil= full path to file containing scale csas input defining heterogeneous

cases
The input string must be enclosed in quotes.

A-38

A-22. JAMAICAN - MODULE TO THIN POINT-WISE 2-D DATA

The point-wise 2-D data created by module MONTEGO can contain a dense mesh of exit energies and
angles. If converting to marginal and conditional probabilities, the mesh can often be thinned. This
module thins the mesh and writes the data out in a format suitable for use in PLATINUM. The program
typically uses equiprobable angle bins except for elastic and discrete inelastic reactions. However, if the
distribution can be described with a number of non-equiprobable angle bins using less than nang angles, non-
equiprobable angle bins are used.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
mon= 20 file containing kinematic data in double differential form
out= 21 output file in platinum format
nang= 32 maximum number of equiprobable energy bins
eps= 1e-3 precision to which to calculate the distributions.
nothin (If present, no thinning is performed.)
form= native file format of the input file native - native format

A-39

A-23. JERGENS - MODULE TO GENERATE WEIGHT FUNCTIONS AND TO COMBINE
ENDF/B TAB1 RECORDS

JERGENS (Just an Excellent Routine to Generate Strings) is the module used to construct a weighting
spectrum such as that needed by X10 or PRILOSEC. The output from the module is a file containing the
new functions written in TAB1 format. JERGENS is used to generate certain predefined functions. If
arbitrary functions are needed, use module FUNCCAL.

Input Data

Block 1

-1$ Options [20]
 1. intlow index for the lowest interpolation value (2)

The list of allowed endf interpolation values (1-5) is given in inter1,
inter2, ..., inter5. The value intlow gives the index of the lowest
interpolation value to try. The user should typically set intlow and
inthigh to 2 and inter1=1, inter2=2, ... This allows only linear-linear
interpolation in the generated weighting function.

 2. inthigh index for highest interpolation value (2) (see intlow for more detailed
explanation)

 3. IOPT3 not used (100)
 4. mat MAT number for the weighting functions (99)
 5. mf MF (file) number for the weighting function (3)
 6. inter1 first interpolation scheme used (1)
 7. inter2 second interpolation scheme used (2)
 8. inter3 third interpolation scheme used (3)
 9. inter4 fourth interpolation scheme used (4)
 10. inter5 fifth interpolation scheme used (5)
 11. ICORE not used (100000)
 12. OPTS not used

0$ Logical assignments [3]
 1. NDFB All external functions required by JERGENS must reside here.

The current version of JERGENS does not allow the use of external
functions.

 2. MWT the logical unit of the output file
 3. MSC not used (18)

1$ Problem information [1]
 1. NMWT number of functions to be written on MWT

2* Energy Range [2]
 1. ELO low-energy cutoff of functions to be generated (in eV) (0.00001)
 2. EHI high-energy cutoff of functions to be generated (in eV) (2.0e7)

Terminate Block 1 with a T.

Repeat Block 2 NMWT times.

A-40

Block 2

3$ Identifier and option selectors [3]
 1. IDWT identifier for function to be created

(equivalent to the MT number in ENDF/B)
 2. NC number of commands associated with the construction of this function

(0) The current version of JERGENS only allows creation of predefined
dose and weighting functions.

 3. IW Options for the desired dose function or weighting function
 0: 1/E
 1: flat
 2: Maxwellian - 1/E - fission spectrum
 3: E
 4: Maxwellian - 1/E - fission spectrum - 1/E above 10 MeV
 5: neutron dose factors per ANSI/ANS 6.1.1-1977
 6: gamma-ray dose factors per ANSI/ANS 6.1.1-1977
 7: 1/V (normalized to 1.0 at 2200 m/s)
 8: Henderson neutron dose factors in

(Rads/hr)/((photons/cm**2)/sec)
 9: silicon gamma dose factors in (Rads/hr)/((photons/cm**2)/sec)
 10: Claiborne-Trubey gamma dose factors in

(Rads/hr)/((photons/cm**2)/sec)
 11: 1/E function with high and low cutoffs
 12: Watt fission spectrum
 9031: ANSI 6.1.1-1992 Neutron Dose Factors
 9032: air neutron kerma factors in (Gr/hr)/((neutrons/cm**2)/sec)
 9033: air neutron kerma factors in (Rad/hr)/((neutrons/cm**2)/sec)
 9034: dose equivalent factors in (Sv/hr)/((neutrons/cm**2)/sec)
 9035: dose equivalent factors in (Rem/hr)/((neutrons/cm**2)/sec)
 9036: neutron effective dose factors in (Sv/hr)/((neutrons/cm**2)/sec)
 9037: neutron effective dose factors in

(Rem/hr)/((neutrons/cm**2)/sec)
 9505: ANSI 6.1.1-1991 gamma dose factors in

(Rads/hr)/((photons/cm**2)/sec)
 9502: Henderson gamma dose factors in

(Rads/hr)/((photons/cm**2)/sec)
 9506: gamma air kerma factors in (Greys/hr)/((photons/cm**2)/sec)
 9507: gamma air kerma factors in (Rad/hr)/((photons/cm**2)/sec)
 9508: dose equivalent factors in (Sv/hr)/((photons/cm**2)/sec)
 9509: dose equivalent factors in (Rem/hr)/((photons/cm**2)/sec)
 9510: gamma Effective Dose Factors in (Sv/hr)/((photons/cm**2)/sec)
 9511: gamma effective dose factors in (Rem/hr)/((photons/cm**2)/sec)
 9029: neutron dose factors per ANSI/ANS 6.1.1-1977
 9504: gamma-ray dose factors per ANSI/ANS 6.1.1-1977
 9027: Henderson Neutron Dose Factors in

(Rads/hr)/((photons/cm**2)/sec)
 9503: Claiborne-Trubey Gamma Dose Factors in

(Rads/hr)/((photons/cm**2)/sec)

4* Constants [6]

A-41

 1. TMAX temperature of the Maxwellian spectrum (K) (300)
If a Watt fission spectrum is generated, then this is the value of a in exp(-
e/a)*sinh(sqrt(b) e) in units of MeV.

 2. AKT multiplier on KT to determine Maxwellian to 1/E join point (5)
If a Watt fission spectrum is generated, then this is the value of b in exp(-
e/a)*sinh(sqrt(b) e) in units of MeV.

 3. THETA effective temperature in eV of the fission spectrum (1.27e6)
 5. FCUT point at which to join I/E to fission spectrum (67.4e3)
 6. SIGD not used
 6. EPS accuracy to which functions are to be generated (0.0001)

Terminate Block 2 with a T.

Notes

The combination of IOPT1, IOPT2 with INT1, INT2, ... INT5 allows a very flexible method of selecting
the kinds of interpolation schemes allowed in the functions produced. The interpolation schemes are as
follows:

Code Type
1 histogram
2 linear x - linea y
3 linear x - log y
4 log x - linear y
5 log x - log y

intlow points to the word in inter1...inter5 which contains the first interpolation code to be tried. inthigh
points to the last word in the string containing the code to be tried. JERGENS cycles through the codes
specified inter(intlow) to inter(inthigh) to determine the best code to use. By default, intlow and inthigh
are both 2, indicating that a linear-linear function is being constructed. intlow = 2 and inthigh = 5 would try
types 2, 3, 4, and 5 in exactly that order. Making intlow= 1 and inthigh = 2, and inter = 5 with inter2 = 2
would cycle between a log-log and a linear-linear scheme, etc. Attempting an interpolation of 1
(histogram) would be fruitless because accuracy specifications could never be satisfied. Therefore, it
should be avoided.

Logical Unit Parameters

Variable Unit number Type Description
NDFB

MWT

 binary

binary

all external functions required by JERGENS
must reside here
The logical unit of the output file

A-42

A-24. KINKOS - KINEMATICS KONVERSION SYSTEM

Kinematics Konversion System (KINKOS) is a module to convert kinematics files generated by module
Y12 into different formats.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
INPUT= IN 31 logical unit of input file
OUTPUT= OUT 32 logical unit of output file
nl= 5 if converting from cosine moment to cosine moment format, the

maximum number of cosine moments to use
eps= 1e-3 precision to which the cosine grid is to be constructed
Select one of these
 y12_d input file is double precision y12 format
 y12_s input file is single precision y12 format
 kfc input file is kfc format
 mon input file is montego format
 native input file is native format
to Keywords before this flag are for the input file. After this flag,

they are for the output file.
Select one of these
 y12_d Output file is double precision y12 format.
 y12_s Output file is single precision y12 format.
 kfc Output file is kfc format.
 mon Output file is montego format.
 native Output file is native format.
 ascii Output file in ascii.
format= cos if saving in native format, the format to which the data should be

converted
cos - Save cosine moments
leg - Save as Legendre moments
tab - Save in tabulated form

fbot= 1e-5 if lopping is switched on, the fraction to remove from the bottom
of the distribution

ftop= 1e-5 if lopping is switched on, the fraction to remove from the top of
the distribution

upscatter correct mt=1007 for upscatter
lop lops small fraction from the exit energy distribution
id= 0 the new id to use for the data if id change is desired
eup= 3.0 if applying upscatter correction, the highest energy which can

have upscatter
eterm= 5.0 if applying upscatter correction, the highest energy for thermal

matrices

A-43

Keyword Alternate Default Definition
cross= 0 unit for the cross section data in TAB1 format
awi= 1.0 mass ratio of incident particle (needed if converting com to lab)

Logical Unit Parameters

Variable Unit number Type Description
input
output

 binary/ASCII
binary/ASCII

A-44

A-25. KINZEST - MODULE TO MANAGE KINEMATIC LIBRARIES

KINZEST (Zippy Ensembler of Strings) is a module analogous to ZEST, except it treats kinematic
libraries.

Input Data

Block 1

0$ Logical assignments [2]
 1. LOG logical unit of library to be written (31)
 2. NLOG number of commands (or libraries) required to create LOG (1)

Terminate Block 1 with a T.

Stack Blocks 2 and 3 one after the other NLOG times.

Block 2

2$ Input library selection [2]
 1. NLIN logical number of input library
 2. NC Options for how the strings are to be treated (0)
  -N: deletes N strings from NLIN to create LOG
  0: accepts all strings from NLIN
  N: adds N strings from NLIN to create LOG

Terminate Block 2 with a T.

Only use Block 3 if NC != 0.

Block 3

3$ MAT numbers from NC [NC]
 1. MAT material identifier(s) of nuclides to be added or deleted. (0) Only used if

NC != 0.
There must be exactly NC values.

4$ New MAT numbers from NC [NC]
 1. MATnew new material identifier(s) of nuclides to be added. (0)

Only used if NC > 0.
A zero leaves the identifier unchanged.

5$ MT numbers from NC [NC]
 1. MT reaction identifiers of nuclides to be added or deleted (0)

Only used if NC != 0.
There must be exactly NC values.

6$ New reaction numbers from NC [NC]
 1. MATnew New reaction identifier(s) of nuclides to be added. (0)

Only used if NC > 0
A zero leaves the identifier unchanged.

A-45

7* awp values to preserve/delete [NC]
 1. awp values of awp to keep or to delete. (0)

Only used if NC > 0

8* zap values to preserve/delete [NC]
 1. zap values of zap to keep or to delete. (0)

Only used if NC > 0

Terminate Block 3 with a T.

Logical Unit Parameters

Variable Unit number Type Description
LOG

NLIN

 binary

binary

logical number of library to be written

A-46

A-26. LAMBDA - MODULE TO PRODUCE LAMBDA FACTORS

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
out= 77 unit for the output file containing the final Bondarenko factors
in= 78 unit for the master containing the 1-D and 2-D neutron data
fnuc= identifier of the fissionable nuclide to use
bnuc= identifier of the background nuclide to use
dens= density value to use for the resonance nuclide in the infinite

medium calculation
bdens= density value to use for background nuclide in the reference case
iddens= density value to use for resonance nuclide in the reference case
feps= 1e-3 lower limit to determine there is no fluctuation

If the standard deviation of the values for different background
densities falls below this value, it is assumed that lambda for this
group cannot be calculated, so it is set it to 1.

eps= 1e-3 used to determine whether enough background values have been
added for calculation

bcut= 1e-4 lowest possible density for the background nuclide
temp= 293 temperature at which to perform the calculation
low= 1 lowest group for which to generate lambda factors
high= 0 highest group for which to generate lambda factors

If 0, the last group is selected.
lcut= 1e-5 lowest possible number density for the background nuclide
hcut= 1e5 highest possible number density for the background nuclide
irmt= 2000 reaction value to use for the generated lambda factors

A-47

A-27. LAVA - AMPX MODULE TO MAKE AN AMPX WORKING LIBRARY FROM AN
ANISN LIBRARY

LAVA (Let ANISN Visit AMPX) is a module that converts an ANISN library (neutron, gamma, or
coupled neutron-gamma) to an AMPX working library such as those used in XSDRNPM. ANISN cross
sections can be entered on cards (fixed or free-form FIDO format) or on a binary library.

Input Data

Block 1

-1$ Core assignment [1]
 1. NWORD number of words to allocate (50,000)

0$ Logical definitions [4]
 1. N1 ANISN library (20)
 2. N2 AMPX working library (4)
 3. N3 scratch (18)
 4. N4 scratch (19)

1$ ANISN library parameter data [8]
 1. NNUC number of isotopes to be put on new library
 2. IGM number of neutron groups
 3. IHT position of sigma_{total}
 4. IHS position of sigma_{g->g'}
 5. IHM table length
 6. IFTG first thermal group
 7. IPM number of gamma groups
 8. IFM format of ANISN library
 -1: binary
 0: free-form BCD
 1: formatted BCD

 9. IFLAG flag that selects the method for calculating scattering cross sections from
scattering matrices (1)

 0: sets elastic cross section to sum_{g'}(sigma_{g->g'})
 1: attempts to calculate the correct elastic cross section

See notes for more details

Terminate Block 1 with a T

Block 2

2$ Identifiers of block of data for the nuclide on the ANISN library [NNUC]
 1. NUCIDS Identifiers of Block of Data for the Nuclide on the ANISN Library

3$ Order of scattering for the nuclide on the ANISN library [NNUC]
 1. SCAT Order of scattering for the nuclide on the ANISN library:

If an order of scattering for a nuclide is negative, the P(l > 0) matrices for
the nuclide will be multiplied by (2l+1) to account for differences in the
way different computer programs require these to be normalized.

A-48

4$ AMPX identifiers for the nuclides selected from ANISN library [NNUC]
 1. AMPXID AMPX identifiers for the nuclides selected from ANISN library

5$ Process identifiers for the top positions in the ANISN cross section tables [IHT]
 1. PROCID Process identifiers for the top positions in the ANISN cross section tables
 The order is from position IHT to position 1 (i.e., backwards from the

way it is in the cross section tables). ANISN always expects
sigma_{total} in position IHT, with nu*sigma_{f} above that, and
sigma_{a} a above that. The contents of the other positions are arbitrary.

6* Fission spectrum [IGM]
 1. FISSION Fission spectrum
 If a nuclide has a nonzero fission cross section, and no fission spectrum

(MT=1018) is specified in the ANISN library or the fission spectrum
(CHI) flag for that nuclide has been set in the 9$ array, then the fission
spectrum specified in the 6* array is used for that nuclide.

7* Neutron energy group boundaries [IGM+1]
 1. IGMS Neutron energy group boundaries

Read high to low in energy (eV)

8* Gamma-ray energy group boundaries [IPM+1]
 1. IPMS Gamma-ray energy group boundaries

Read high to low in energy (eV)

9$ Nuclide CHI flags [NNUC]
 1. CHIS Nuclide CHI flags

If 0, use the fission spectrum from the ANISN library; if 1, use the
fission spectrum from the 6* array

Terminate Block 2 with a T

Notes

ANISN matrices are the sum of the individual scattering matrices (elastic, inelastic, n2n, n3n, etc.) for
processes possible for the particular nuclide. LAVA attempts to arbitrarily determine values for an elastic
(MT = 2) and an n2n (MT = 16) cross section, recognizing that elastic scattering is generally the most
dominant scattering process, and that n2n is the most common scattering process that yields more than a
single exit neutron. In order to accomplish this, the absorption cross section in the ANISN data must be
the true absorption value (not an energy absorption cross section as in some older gamma- ray sets, or
whatever alternative value). When IFLAG = 1, requiring the correct absorption, the elastic value is taken
as

sigma_{el}^{g} = sigma_{t}^{g} - sigma_{a}^{g}
while the n2n is taken from
sigma_{n2n}^{g} = sum_{g'} sigma_{0}(g -> g') - sigma_{el}^{g}
When IFLAG = 0, no attempt is made to calculate an n2n value, and the elastic value is simply
sum_{g'}(sigma_{g->g'})

A-49

Sample Input

0$$ 20 4 18 19 1$$ 5 16 3 4 16 16 0 0 0 T
2$$ 1 5 9 13 17
3$$ 333 3 3
4$$ 92235 92238 26000 1001 8016
6** Put in 16 numbers for a Fission Spectrum
T

This input will create an AMPX working library on logical unit 4 from an ANISN binary library on
logical unit 20. The ANISN library is for 16 neutron energy groups and has the total cross section in
position 3, the within-group scattering in position 4 with a table length of 16. There are no gamma groups.
The ANISN identifiers are 1, 5, 9, 13, and 17 for the P0 parts of a P3 fit to 235U, 238U, Fe, 1H, and 16O,
respectively. The energy group boundaries are not read since the 16-group structure is one of the standard
AMPX structures.

Logical Unit Parameters

Variable Unit number Type Description
N1 binary ANISN library
N2 binary AMPX working library
N3 binary scratch
N4 binary scratch
N5 binary
N6 binary
 47 binary scratch

A-50

A-28. LINEAR - MODULE TO LINEARIZE FUNCTIONS WRITTEN IN TAB1 FORMAT

LINEAR is a module that will read a point TAB1 data file, which is written by a program such as
POLIDENT, and linearize the data to within a user-specified tolerance.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
IN= 1 logical unit of input file
OUT= 2 logical unit of output file
FORCE= yes flag to force linearization even if it is already linear

yes - Force linearization
no - Do not force linearization

MORE= no flag to print arrays before and after linearization
yes - print
no - do not print

EPS= 0.001 tolerance to which points are tested to see if they can be linearly
interpolated
Note that EPS is the relative difference (A-B)/A, not the
percentage difference. A value of 0.01 is equivalent to 1%.

Sample Input

IN=23 OUT=24 EPS=0.005 END

This input indicates that data from the TAB1 file on logical unit 23 should be read, and a TAB1 file
on logical unit 24 should be written with functions that can be linearly interpolated to within 0.5% of the
original ones.

Logical Unit Parameters

Variable Unit number Type Description
LOGIN
LOGOUT

 binary
binary

A-51

A-29. LIPTON - CONVERT ASCII ENDF/B FILE THAT CONTAINS FILE 3, 9 AND 10 TO
BINARY

LIPTON is a program to read an ASCII ENDF/B File that contains File 3, 9 and 10 data and create Tab1
binary records for File 3, 9 and 10 records. The resultant file can then be passed to PRILOSEC for
processing. For Files 9 and 10, the MTs are redefined as MT*10000+LFS*100+LIS, and the functions are
written as TAB1 triplets instead of using the multiple subsection scheme. File 9 functions are constructed
by multiplying the appropriate cross sections from File 3 by the File 9 values. No attempt is made to form
the product functions to a user-specified precision at present, though it may be done later.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
file3= 3 binary tab1 file containing File 3 data
file9= 9 binary tab1 file containing File 9 and 10 data
out= 10 result of combining File 3, 9 and 10 in binary tab1 format.

Logical Unit Parameters

Variable Unit number Type Description
ndfb ASCII
tab1 binary
 14 binary scratch
 15 binary scratch
 16 binary scratch

A-52

A-30. MAKPEN - MODULE TO GENERATE CROSS SECTION DATA IN A PENDF
FORMAT

MAKPEN (MAKe PENDF) is module that reads CE cross section data in a TAB1 format and generates a
Point ENDF cross section file (PENDF). MAKPEN reads the File 1and abbreviated File 2 information
from the POLIDENT logical output LOGP1. Subsequently, MAKPEN reads the user-specified TAB1
formatted cross section data and constructs a PENDF library. The code input is freeform with keyword
definitions.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
title= title line for the PENDF tape
in1= 31 TAB1 formatted cross section file
in2= 32 POLIDENT output file with File 1 and File 2 information

this is the LOGP1 file generated by POLIDENT
iout= 40 PENDF cross section output file
tol= POLIDENT convergence tolerance for energy mesh construction

Sample Input

title=u-238 endf6, polident generated cross sections title=processed by m.
e. dunn
in1=35 in2=32 iout=36 nnuc=1 tol=0.001

The input above can be used to convert an AMPX TAB1 file for 238U to a PENDF format that can be
processed by the NJOY code system. For the example case, the ENDF/B-6 evaluation for 238U was
processed through POLIDENT with an energy-mesh generation tolerance of 0.001 (i.e., 0.1%), and
the TAB1 pointwise cross section file from POLIDENT is stored on logical unit 35. In the input for
MAKPEN above, a title description is provided to define the point cross section file. Subsequently, the
input TAB1 file is specified to be on logical unit 35. In addition, POLIDENT provides an output file with
ENDF/B File 1 information, and the input in2=32 specifies that this information is located on logical unit
32. The PENDF created by MAKPEN will be produced on logical unit 36. Moreover, the sample input
indicates that a single isotope/nuclide will be processed. Note that the energy-mesh generation tolerance
is also specified in the MAKPEN input (i.e., tol=0.001).

A-53

Logical Unit Parameters

Variable Unit number Type Description
in1 binary TAB1 formatted cross section file
in2 binary POLIDENT output file with File 1 and File 2

information
iout binary PENDF cross section output file
ltab1 binary
 14 binary scratch
 15 binary scratch
 16 binary scratch

A-54

A-31. MALOCS - MODULE TO COLLAPSE AMPX MASTER CROSS SECTION LIBRARIES

MALOCS (Miniature AMPX Library of Cross Sections) is a module to collapse AMPX master cross
section libraries. The module can be used to collapse neutron, gamma-ray, or coupled neutron-gamma
master libraries.

Input Data

Block 1

0$ Library Logical Unit Numbers [2]
 1. NOLD logical number of device containing fine-group AMPX master library (1)
 2. NNEW logical number of device containing broad-group AMPX master library

(22)

1$ Case Description [6]
 1. NNEUT number of neutron fine group
 2. IGMF number of neutron broad groups
 3. NGAM number of gamma-ray fine group
 4. IPMF number of gamma-ray broad groups
 5. IWN Neutron weighting option (0)
 0: Input neutron weighting spectrum in the 5* array
 1: Use MT=1099 1-D neutron data from each fine-group master

data set for the neutron weighting spectrum.
 other: Use the 1-D data identified with an MT number of IOPT2

For values < 0, see 3$ array. Use the 1-D data identified with an
MT number of IOPT2 spectrum for all neutron data sets being
collapsed.

 6. IWG gamma weighting option (0)
 0: Input gamma-ray weighting spectrum in the 7* array
 1: Use MT=1099 1-D gamma-ray data from each fine-group master

data set for the gamma-ray weighting spectrum.
 other: Use the 1-D data identified with an MT number of IOPT6

For values < 0, see 3$ array. Use the 1-D data identified with an
MT number of IOPT6 spectrum for all gamma-ray data sets
being collapsed.

3$ Option Triggers [10]
 1. IOPT1 if > 0, identification number of master data for neutron weighting (0)

Identification number of master data set from which the neutron
weighting spectrum (IOPT2 data) will be obtained

 2. IOPT2 if > 0, process identifier (MT number) of neutron weighting spectrum in
IOPT1 master data set (0)

 3. IOPT3 trigger to print broad-group 1-D cross section (0)
 1: print data
 0: do not print data

 4. IOPT4 trigger to print broad-group transfer matrices (0)
 0: do not print data
 other: print arrays through order N

A-55

 5. IOPT5 auxiliary gamma-ray weighting spectrum trigger (0)
if > 0, identification number of master data set from which the gamma-
ray weighting spectrum (IOPT6 data) will be obtained.

 6. IOPT6 process identifier (MT number) of gamma-ray weighting spectrum in
IOPT5 master data set (0)

 7. IOPT7 trigger to collapse out upscatter terms if nonzero (0)
 0: no upscatter truncation (recommended)
 1: XSDRNPM method of upscatter truncation
 2: ANISN method of upscatter truncation
 3: simple sum method of upscatter truncation
 4: Non-negative ANSIN method of upscatter truncation
 8. IOPT8 trigger to truncate downscatters to a maximum of IOPT8 terms below the

within group if IOPT8 is nonzero (0)
 9. IOPT0 not used (0)
 10. IOPT10 weighting spectrum printing option (0)
 0: Do not print weighting spectrum
 1: print weighting spectrum

Terminate Block 1 with a T.

Block 2

4$ Neutron broad-group numbers by fine group [NNEUT]
 1. NNEUTS neutron broad-group numbers by fine group

only used if NNEUT > 0
a zero "suppresses" a fine group.

5* Neutron weighting spectrum [NNEUT]
 1. NNEUTW neutron weighting spectrum

only used if IWN = 0
6$ Gamma-ray broad-group numbers by fine group [NGAM]
 1. NGAMS gamma-ray broad-group numbers by fine group

only used if NGAM > 0
When collapsing the gamma groups in a coupled master library, the 6$
entries are the actual group numbers and do not need to include the
number of neutron groups.

7* Gamma-ray weighting spectrum [NGAM]
 1. NGAMW gamma-ray weighting spectrum

only used if IWG = 0

Terminate Block 2 with a T.

Sample Input

1$$ 16 4 0 0 0 0 2$$ 1 2 T
4$$ 4R1 4R2 4R3 4R4
5**
1.234E-7 5.697E-7 8.724E-6 9.412E-5
9.269E-5 8.193E-4 3.627E-4 8.463E-4
3.492E-4 8.624E-3 7.999E-4 3.224E-5
1.947E-5 2.333E-5 8.387E-5 4.417E-6
T

A-56

This input produces a collapsed AMPX master library on logical unit 2 with 4 neutron energy groups,
starting with a master library in 16 energy groups on logical unit 1. Groups 1–4 become broad group 1, 5–8
become broad group 2, 9–12 become broad group 3, and 13–16 broad become broad group 4.

Logical Unit Parameters

Variable Unit number Type Description
NOLD binary logical number of devices containing fine-

group AMPX master library
N1 binary
N2 binary
 17 binary scratch
 18 binary scratch
 19 binary scratch

A-57

A-32. MALT - MAKE ANISN LIBRARY TRANSFORMATION

This program converts a binary ANISN library to the ASCII format and vice versa.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= 31 logical unit of input file
out= 32 logical unit of output file
i1= number of columns in the ANSIN output file
i2= number of rows in the ANSIN output file
id= ANISIN ID to use if reading an AMPX master
istart= start of data

If 0, the user assumes that only neutron 1-D data are wanted. If
gamma data with the same mt value exist, they are added after the
neutron data. If larger than 0, only the gamma data are added, and
istart is the number of neutron groups.

Select one of these
 fixed fixed ANISN library format
 free free ANISN library format
 binary binary ANISN library format
 ampx reads 1-D data from AMPX master
to to keywords before this flag are for input file. After this flag for

output file
Select one of these
 fixed fixed ANISN library format
 free free ANISN library format
 binary binary ANISN library format

Logical Unit Parameters

Variable Unit number Type Description
log binary or BCD

A-58

A-33. MG_TO_KIN - CONVERT TOTAL MG SCATTERING MATRIX TO CE

This module converts a total scattering matrix given in a working format AMPX library into a double
differential format suitable for processing in JAMAICAN. It is easier to generate a total scattering matrix
in MG format, as the elastic and discrete inelastic scattering matrices are given in Legendre format, which
is easily added together. This MG total scattering matrix can then be added to a CE library for use with
point detectors.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= 31 logical unit of input MG library
out= 32 logical unit of output kinematic file in native format
worker If present, the MG library is a working library
scratch= 14 scratch unit used during processing
mat= ID of the nuclide to process

Logical Unit Parameters

Variable Unit number Type Description
in
scratch out

 binary
binary binary

logical unit of input MG library
scratch
logical unit of output kinematic file in native
format

A-59

A-34. PALEALE - IMPROVED MODULE FOR PRINTING DATA FROM AMPX LIBRARIES

PALEALE is an extension of the ALE module that is provided to list data from AMPX master and working
libraries. In addition to allowing a user more flexibility in selecting the information to be printed, some of
the output formats have been improved, and a significant improvement is to allow a user to control the
line lengths so that the printed information is easier to view on an 80-character terminal display. The input
to PALEALE uses the ALE input as its basis (that is to say that a user can use exactly the same input and
get improved outputs); however, additional parameters can be supplied in new arrays to give a user more
control over how information is printed and to allow for reducing the volume of the output normally
produced by an ALE run.

Please understand that all of the reports that can be printed by ALE have not been upgraded to give the user
all the additional control. For example, the resonance information, whether it is resolved resonance
parameters or Bondarenko factors still give the same output and are difficult to read on a terminal.
The two areas that have been revised are the group-averaged data edits, and, especially, the transfer
matrix edits. In the latter case, the edits have progressed from something that is virtually unreadable and
hard to understand to something which is simple and well-labeled. Sample outputs will be given in a
later Section.

PALEALE will be modified as time is available to allow more user control over the edits it produces.

Input Data

Block 1

0$ Logical unit assignments [2]
 1. MMT logical unit of AMPX master library (1)
 2. MWT logical unit of AMPX working library (0)

1$ Number of nuclides for which edits are wanted [1]
 1. NEDIT number of nuclides for which edits are wanted

2$ Data classes to be printed [10]
 1. ICLASS1 group-averaged neutron data (0)
 0: Do not print
 1: Print
 2. ICLASS2 group-averaged gamma data (0)
 0: Do not print
 1: Print
 3. ICLASS3 resonance parameter data (resolved data or Bondarenko factors) (0)
 0: Do not print
 1: Print
 4. ICLASS4 not used
 5. ICLASS5 not used
 6. ICLASS6 not used
 7. ICLASS7 not used
 8. ICLASS8 not used
 9. ICLASS9 not used
 10. ICLASS10 not used

3$ Carriage control characters to be used in printing classes of data [25]

A-60

 1. JCLASS1 option whether to start the data for a nuclide on a new page (0)
 0: Do not start the data for a nuclide on a new page.
 1: Start the data for a nuclide on a new page.
 2. JCLASS2 option whether to start the group-averaged data on a new page (0)
 0: Do not start the group-averaged neutron cross sections on a new

page.
 1: Start the group-averaged neutron cross sections on a new page.
 3. JCLASS3 printing of group-averaged gamma cross (0)
 0: Do not start the group-averaged gamma cross sections on a new

page.
 1: Start the group-averaged gamma cross sections on a new page.
 4. JCLASS4 printing of transfer matrices (0)
 0: Do not start transfer matrices for each process selected on a new

page.
 1: Start transfer matrices for each process selected on a new page.
 5. JCLASS5 not used

4$ Process identifiers of transfer matrices to be printed [100]
 1. MTID process identifiers of transfer matrices to be printed

Input up to 100 process identifiers (MT-numbers) for the transfer
matrices that should be printed. Note that a working library has only one
transfer matrix, the "total" transfer matrix, which is selected by entering a
1.

5$ Maximum order of Legendre coefficient of transfer matrix to be printed [100]
 1. MAXOLC maximum order of Legendre coefficient of transfer matrix to be printed

Enter up to 100 values in one-to-one correspondence with the 4$ array

6$ Temperature for the scattering matrices to be printed [100]
 1. MAXTEMP temperature for the scattering matrices to be printed

Enter up to 100 temperatures in Kelvin for the scattering matrices to be
printed. These must be entered in a one-to-one correspondence with the
4$ and 5$ arrays.

7$ Neutron process selection [200]
 1. MAXNPROC neutron process selection

Enter up to 200 process identifiers (MT-numbers) for the processes to be
included in the print of the neutron group-averaged data. For example, if
1, 2, 4, 16, 18, and 27 are entered and filled with zeroes, the printout will
include the total, elastic scattering, inelastic scattering, n2n, fission, and
absorption cross sections, respectively.

8$ Gamma process selection [200]
 1. MAXGPROC gamma process selection

Enter up to 200 process identifiers for the processes to be included in the
print of the gamma group-averaged data.

9$ Page format parameters [3]
 1. NLMAX order of scattering to be printed (10)
 2. NTMAX number of temperatures at which scattering matrices will be printed (10)
 3. LINE line length that will be printed (80)

A-61

 Note that this parameter only applies to group-averaged cross section and
scattering matrix edits at present.

Terminate Block 1 with a T.

Only use Block 2 if NEDIT > 0.

Block 2

11$ Identifiers of the Nuclides [NEDIT]
 1. IDS identifiers of the nuclides for which the user wants data printed

Only used if NEDIT > 0.
Enter NEDIT nuclide identifiers. Note that when NEDIT=0, the
information selected in the first block will be printed for all nuclides in
the library. To avoid having data for some nuclides included in the
printout, the AJAX module should be used to select the nuclides desired.

12$ Zone of the Nuclides [NEDIT]
 1. IDZS zone of the nuclides for which the user wants data printed (-1); only used

if NEDIT > 0
Enter NEDIT nuclide zone identifiers. A -1 selects all zones

Terminate Block 2 with a T.

Notes

Note that one cannot produce edits from a master and a working file in the same execution.

Sample Input

-1$$ 500000 0$$ 10 E 1$$ 1 4$ 2 F0
5$ 3 F0 7$ 1 2 4 18 27 E T
11$$ 1000 T

This input says to allocate 500,000 words of core to PALEALE and to read data from the AMPX
master library on logical unit 10 for 1 nuclide, whose identifier is 1000. The scattering matrix for elastic
scattering up to order P3 will be listed, along with the group-averaged data for MT=1 (total), MT=2
(elastic scattering), MT=4 (inelastic scattering), MT=18 (fission), and MT=27 (absorption).

Logical Unit Parameters

Variable Unit number Type Description
MMT binary logical unit of AMPX master library
MWT binary logical unit of AMPX working library
 14 binary scratch

A-62

A-35. EXTRACT - MODULE TO READ AN NJOY PENDF AND CREATE A TAB1 FILE

EXTRACT is a module that will read an ASCII PENDF that NJOY creates, and select the tabulated cross
sections for a nuclide. These cross sections are written to a binary TAB1 File. File 1 and 3 reactions are
copied.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
IN= 31 logical unit of PENDF library
OUT= 32 logical unit of the output TAB1 library
mode= 1 format of the output TAB1 file

1 - single precision tab1 format
-1 - double precision tab1 format

T= space-separated list of temperature(s) wanted on the output file. If
not given, all temperatures are included.

MAT= space-separated list of material identifiers wanted.
MT= space-separated list of reaction identifiers. If not present, all are

included.

Sample Input

in=32 out=34 mat=9237 mode=-1

This example requests copying file 1 and 3 data for 238U (MATNO=9237). The input PENDF is on logical
unit 32, and the output TAB1 file is on logical unit 34 and is in double precision.

Logical Unit Parameters

Variable Unit number Type Description
IN
OUT

14

BCD
binary

binary

logical unit of PENDF library
logical unit of the output TAB1 library
scratch

A-63

A-36. PICKEZE - MODULE TO PICK FUNCTIONS FROM A TAB1 FILE

PICKEZE is a module that selects functions or classes of data on a library written as a TAB1 file and
writes a new TAB1 file that contains the selected data. For example, if a file with the total cross section at
300 K is needed, PICKEZE can be used to extract the desired cross section data. There are other AMPX
modules that will perform similar operations, such as ZEST, but none at the level of detail allowed by
PICKEZE.

Input Data

Block Parameters

-1$ Core allocation [1]
 1. ICORE not used (500000) START HEREA

0$ Logical unit assignments [2]
 1. LOGIN logical unit of the input TAB1 file (31)
 2. LOGOUT logical unit of the output TAB1 file (32)

1$ Selection option control parameters [7]
 1. NMAT number of materials to select (0)

Zero selects all materials.
 2. NMF number of file types to select (0)

Zero selects all file types.
 3. NMT number of processes to select (0)

Zero selects all processes.
 4. NT number of temperatures to select (0)

Zero selects all temperatures.
 5. NSIG0 number of background cross section to select (0)

Zero selects all background cross sections.
 6. temp_sel exclusively selects temperature (0)
 1: select exclusively
 0: also select non-broadened
 If exclusive selection is chosen, only processes with the desired

temperature are selected. If non-broadened is selected, processes
with only one temperature (0K) are also selected. Usually only a
subset of processes is broadened; the remaining processes have
only one temperature.

 7. sig_sel exclusively selects background cross section values (0)
 1: select exclusively
 0: also select sig0=0
 If exclusive selection is chosen, only processes with the desired

background cross section are selected. If Also select sig=0 is
chosen, processes with only one value of sig0 on the file are also
selected.

Terminate block parameters with a T.

Block arrays

2$ Selected material identifiers [NMAT]

A-64

 1. MATS material identifiers for the desired processes

3$ Selected file identifiers [NMF]
 1. MFS file identifiers for the desired files

4$ Selected Process Identifiers [NMT]
 1. MTS reaction identifiers for the desired reactions.

If negative, then the specified reactions will be removed

5* Selected temperatures [NT]
 1. NTS values for the desired temperatures

6* Selected background cross sections [NSIG0]
 1. NSIG0S values for the desired sig0 values

Terminate block arrays with a T.

Sample Input

0$$ 23 24 1$$ 0 0 1 1 0 E T
4$$ 1
5** 300
T

The input TAB1 file is on logical unit 23, and the output TAB1 file is on logical unit 24. One process and 1
temperature are selected: MT=1 (total cross section) and 300K, respectively.

Logical Unit Parameters

Variable Unit number Type Description
LOGIN binary logical unit of the input TAB1 file
LOGOUT binary logical unit of the output TAB1 file
 14 binary scratch

A-65

A-37. PLATINUM - PKENO LIBRARY ASSEMBLER TOOL IN A USEABLE MODULE

PLATINUM (Pkeno Library Assembler Tool in a Useable Module) is a module that assembles a
pointwise data library for CEKENO. PLATINUM reads 1-D pointwise data, kinematics data, and
probability table data in order to assemble a cross section library for a single isotope/nuclide for
CEKENO. It can also create a gamma cross section file for an element from 1-D pointwise data and
kinematics data.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
gamma processes gamma data
identifier= id for data set to be created for SCALE:

MAT+10000*MOD+1000000*Version
vers= 7 evaluation version number - used to construct identifier if

identifier not specified
source= 0 id for data evaluation source (max 2 digit integer)

-1 - unknown
0 - ENDFB
1 - JEF
2 - JENDL
3 - BROND
4 - CENDL
other: user-defined source

title= 100-character title for data set
(Title should be only entry on a line.)

out= 60 starting logical unit number for CE library (Code will increment
the unit number for each temperature.)

maxtemp= 100 maximum number of temperatures possible on file
outtemp= 0 If not entered, all temperatures will be put out.
sigp= 0.0 potential scattering cross section
centrm= corresponding thermal scattering kernel filename
debug Prints extra debug output
eps= 0.0001 tolerance used for combining functions
icversion= none version of input creator used to create the input files
filever= 1.1 version of xsecs created by the latest input files
fileid= output filename prefix. (Output filename will be fileid_temp where

temp is the temperature.)
filedate= date on which the input file is created by the input creator
ampxver= 6.0 version of AMPX being used
ampxdate= date on which the AMPX module is created
scalever= 6.0 version of SCALE being used
scaledate= date on which the SCALE package is created
union= no yes - turn on unionization

no - co not turn on unionization

A-66

Keyword Alternate Default Definition
fixnegatives= no yes - fix large negatives

no - do not fix large negatives
outdetail= normal output detail level

normal - print all useful information
more - print more than just useful information

gyield= no yes - put gamma yield data onto the final library
no - do not put gamma yield data onto the final library
If filever is 2.0 or larger, gyield is set to yes.

debug= prints extra debug information
gamma= creates gamma library file

Repeat block cross section 1 time.

Block Cross Section

Block starts on first encounter of a keyword in the block. Block end is reached if all required parameters
are given.

Keyword Alternate Default Definition
n1d= 1-D CE cross sections (neutron or gamma)
id= 0 Material identifier for 1-D data

Repeat block info file 1 time.

Block Info File

Block starts on first encounter of a keyword in the block. Block end is reached if all required parameters
are given.

Keyword Alternate Default Definition
info= logical unit for information file
id= 0 material identifier for info data

Repeat block fast kinematics data 1 time.

Block Fast kinematics data

Block starts on first encounter of a keyword in the block. Block end is reached if all required parameters
are given

Keyword Alternate Default Definition
n2d_fast= logical unit for fast kinematics data (neutron or gamma)
id= 0 material identifier for 2-D fast kinematics data
Repeat block thermal kinematics data as often as needed.

A-67

Block Thermal kinematics data

Block starts on first encounter of a keyword in the block. Block end is reached if all required parameters
are given

Keyword Alternate Default Definition
Select one of these
 n2d_free 0 logical unit for free-gas kinematics data (neutron)
 n2d_sab 0 logical unit for thermal scattering law kinematics

(neutron)
If thermal scattering law data are specified, n2d-free must be 0.

id= 0 material identifier for 2-D thermal kinematics data

Repeat block probability table data as often as needed.

Block Probability Table Data

Block starts on first encounter of a keyword in the block. Block end is reached if all required parameters
are given.

Keyword Alternate Default Definition
ptable= logical unit for probability table data (neutron)
id= 0 material identifier for probability table data

Sample Input

identifier=xxxxxxxx source=xx vers= output=log
title=ttt n1d=log
id=xxxxxxxx
info=log id=xxxxxxxx n2d_fast id=xxxxxxxx n2d_free id=xxxxxxxx

n2d_sab id=xxxxxxxx sigp=sigp centrm=fname
ptable id=xxxxxxxx icversion=icv
debug end

Logical Unit Parameters

Variable Unit number Type Description
out binary starting logical unit number for CE library

(Code will increment the unit number for each
temperature.)

n1d binary 1-D CE cross
sections (neutron or gamma)

info binary logical unit for information file
n2d_fast binary logical unit for fast kinematics data (neutron or

gamma)
n2d_free binary
n2d_sab binary

A-68

Variable Unit number Type Description
ptable binary logical unit for probability table
 data (neutron)
 14 binary scratch
 15 binary scratch
 16 binary scratch
 17 binary scratch

A-69

A-38. POLIDENT - MODULE TO PRODUCE POINT DATA FROM RESONANCE DATA

POLIDENT (Point Libraries of Data from ENDF/B Tapes) is a module that accesses the resonance
parameters from File 2 of an ENDF/B library and constructs the CE cross sections in the resonance
region. The cross sections in the resonance range are subsequently combined with the File 3 background
data to construct the complete cross section representation as a function of energy. POLIDENT has the
following notable features:

 processes all resonance reactions that are identified in File 2 of the ENDF/B library

 processes single- and multi-level Breit - Wigner, Reich-Moore and Adler-Adler resonance
formalisms

 provides a robust energy mesh generation scheme that determines the minimum, maximum and
points of inflection in the cross section function

 processes all CE cross section reactions identified in File 3 of the ENDF/B library and outputs all
reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules

 processes multi-isotope nuclides with different resonance ranges

 treats discontinuities in cross section data by taking the limit of the function from both sides of
the discontinuity

 provides ENDF/B File 1 and abbreviated File 2 data that can be used to construct a PENDF (Point
ENDF) file by the AMPX module MAKPEN

Input Data

Block 1

-1$ File9Processing [1]
 1. File9 if not 0, unit in which to save file 9 and file 10 data (0)

0$ Output library [3]
 1. LOGP logical unit for point-wise cross section data (31)
 2. LOGP1 logical unit for File 1 and abbreviated File 2 information (32)
 3. LOGRES restart unit (0)

1$ Number of cases [1]
 1. NNUC number of cases (1)

Terminate Block 1 with a T.

Repeat Block 2 NNUC times.

Only use Block 2 if NNUC > 0.

A-70

Block 2

2$ ENDF/B Data Source [4]
 1. MAT ENDF material identifier for nuclide to be processed
 2. NDFB logical unit number for ENDF library (11)
 3. MODE ENDF library format (2)
 1: binary
 2: BCD
 4. NVERS not used (0)
 5. mesheps convergence tolerance for energy mesh generation (0.001)

4* Floating Point Parameters [14]
 1. EPS epsilon to combine data from Files 3 and 2 (0.001)
 2. R the ratio factor used in a cross section energy mesh (0.99)

value that is used only for nuclides using the Adler-Adler
parameterization in the resolved resonance range

 3. XNP the number of points taken equally spaced in lethargy between resonance
bodies (50.0)
value used only for nuclides using the Adler-Adler parameterization in
the resolved resonance range

 4. XGT the multiplier on the total width above and below a resonance over which
the ratio mesh scheme is used (50.0)
value used only for nuclides using the Adler-Adler parameterization in
the resolved resonance range

 6. OPT2 not used (0)
 7. OPT3 not used (0)
 8. OPT4 not used (0)
 9. OPT5 not used (0)
 10. OPT6 not used (0)
 11. OPT7 not used (0)
 12. OPT8 not used (0)
 13. OPT9 not used (0)
 14. OPT10 not used (0)

5$ Options [8]
 1. intstart starting value for interpolations to be tried (1)

the values for interpolation to be tried start at inter1 and go through
inter6, listing the default endf interpolation values. Usually lin-lin is the
only one desired for point-wise cross section data.

 2. intstop ending value for interpolations to be tried (1)
the values for interpolation to be tried start at inter1 and go through
inter6, listing the default endf interpolation values. Usually lin-lin is the
only one desired for point-wise cross section data.

 3. IOPT3 maximum number of interpolation regions allowed in the output (1)
 4. inter1 Interpolation type to be tried (2)

Linear-Linear is 2. Other allowed values are 1-5.
 5. inter2 Interpolation type to be tried (0)

Linear-Linear is 2. Other allowed values are 1-5.
 6. inter3 Interpolation type to be tried (0)

Linear-Linear is 2. Other allowed values are 1-5.

A-71

 7. inter4 interpolation type to be tried (0)
Linear-Linear is 2. Other allowed values are 1-5

 8. inter5 interpolation type to be tried (0)
Linear-Linear is 2. Other allowed values are 1-5

6$ Function parameters [4]
 1. AddMt51 If not zero, add MT=51 from URR range if applicable. (0)
 2. N2MAX not used (0)
 3. MLBW not used (0)
 4. IPOINTS maximum number of points per 10eV interval (5000)

Terminate Block 2 with a T.

Notes

Parameters R, XNP, and XGT in Block 2, Array 4 are only used for generating an energy mesh
for nuclides with the Adler-Adler formalism.

intstart, instop, and inter1 through inter5 are used to specify the interpolation types and their order
which will be in combining two or more ENDF/B functions. The types are as follows:

1. Histogram
2. Linear x, linear y
3. Linear x, log y
4. Log x, linear y
5. Log x, log y

instart and intstop specify which entries in the five-position table are to be used (e.g., the default values of 1
indicate that only the first entry in the table should be used, or linear-linear interpolation by default).

Sample Input

0$$ 31 32 1$$ 5 T
2$$ 9228 11 2 T
2$$ 9231 11 2 T
2$$ 2637 11 2 T
2$$ 125 11 2 T
2$$ 825 11 2 T

This input tells POLIDENT to access an ENDF/B file on logical unit 11 that is in BCD format and that
contains the data for nuclides 235U, 238U, Fe, 1H, and 16O, identified by 9228, 9237, 2631, 125, and 825,
respectively. The data will be written to logical unit 31.

A-72

Logical Unit Parameters

Variable Unit number Type Description
NDFB BCD logical unit number for ENDF library
LOGRES binary restart unit
LOGP binary logical unit for point-wise cross section data
LOGRES binary restart unit
 14 binary scratch
 15 binary scratch
 18 binary scratch

A-73

A-39. PRELL - MODULE TO PRODUCE AND MANIPULATE AN ENERGY LIMITS
LIBRARY

PRELL (Produce Reordered Energy Limits Library) is an AMPX module to create copy, modify, punch,
or list an AMPX energy-group-limits library. The new library will be reordered in an increasing number
of groups for neutron structures, then in the order of increasing groups for gamma structures. The new
library may be printed. Modification features include adding new structures to an existing library and
changing boundaries in an existing structure.

Input Data

Block 1

0$ Logical unit assignments [3]
 1. NO logical unit number of the old library (77)

If a new group limits library is being created, a 0 is entered for this
parameter.

 2. NW logical unit number of the new library (18)
 3. NS not used (0)

1$ Options [2]
 1. NOPT Print option (0)
 0: prints only new or updated group structures
 1: prints all group structures
 2. NSETS number of sets to be added/deleted and/or modified (0)

Terminate Block 1 with a T.

Stack Block 2 and 3 one after the other NSETS times

Block 2

3$ FLAGS [3]
 1. IG number of groups in set

If negative, the group structure is deleted from the file
 2. ITYPE type of group structure (0)
 0: neutron-group-structure
 1: gamma-group-structure
 3. IVER version of group structure; only 0 is currently allowed (0)

Terminate Block 2 with a T.

Only use Block 3 if IG > 0.

Block 3

7* Group boundaries [IG+1]
 1. IGB group boundaries in eV

Terminate Block 3 with a T.

A-74

Notes

The structure of the group limits file is very simple. It consists of one header record that indicates how
many group structures are included and what they are. This is followed by one record for each group
structure indicating the energy boundaries (in eV). The structure of record 1 is:

Record 1: NS, (INDEX(J,I), J=1,3), I=1,NS)

The NS records that follow this use:

Records 2, NS+1: IGM, (EBDRY(I), I=1,IGM+1)

The usage of the INDEX array is as follows:

INDEX(1,I) number of energy groups of the Ith structure,
INDEX(2,I) particle type (0 for neutrons, 1 for photons) of the Ith
structure, and
INDEX(3,I) version of the Ith structure (this term has never been
activated.

IGM is a repeat of the number of energy groups, and the EBDRY array contains the group limits in eV
arranged in descending order.

Sample Input

0$$ 47 48 0 1$$ 0 2 T
3$$ 537 0 0 T
7** (Put in 538 energy boundaries for a 537 group neutron structure.)
T
3$$ 10 0 0 T
7** (Put in 11 energy boundaries for a 10 group neutron structure.)
T

This input shows how the user would update the standard energy group library on logical unit 47, to
include new 538 and 10 energy group neutron structures. The new group library will be written on
logical unit 48 and will contain all of the older structures, in addition to the two new structures.

Logical Unit Parameters

Variable Unit number Type Description
NO

NW

 binary

binary

logical unit number of the old
library
logical unit number of the new library

A-75

A-40. PRILOSEC - MODULE TO PRODUCE ORIGEN CROSS SECTION LIBRARIES

PRILOSEC (Produce Incredible Libraries of Cross Sections) is a module that reads a file with TAB1
records and creates an AMPX master library for each material that it finds on the library. The ZA number
will be used for an identifier unless the noorig keyword is supplied. Only one temperature for each
nuclide is allowed. If the file contains more than one temperature, module PICKEZE should be used to select
the desired temperature value.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
master= 1 logical unit for final library
tab1= 32 logical unit of point data
logwt= 32 logical unit for weighting function file
logebdry= 47 logical unit for file containing energy boundaries The file

containing the standard AMPX energy boundaries is by default
linked to unit 47. If a non-standard group structure is preferred,
the prell module should be used.

title= title for the nuclides
nuclide id added automatically

matwt= material number of the weighting function
mtwt= reaction number of the weighting function
eps= 1e-5 precision to which to calculate the integral
igm= number of neutron groups
noorig If set, mt values and ids will not be reset for ORIGEN.
nowork If set, an AMPX master file will be produced.
old If set, the old format for ORIGEN libraries will be used.

A-76

A-41. PRUDE - AMPX MODULE TO CREATE CROSS SECTIONS FOR THE UNRESOLVED
RESONANCE ENERGY REGION

PRUDE (Process Unresolved Data on ENDF/B) is a module that accesses the unresolved resonance data
in file 2 of an ENDF/B library and writes out a file which gives the energy variation of average cross sections
for several important processes as a function of temperature and the weighting parameters, sigma0. Its
primary use is to pass these data to the TABU module, which creates Bondarenko factors that ultimately
become part of an AMPX master interface. The Bondarenko factors are used by the BONAMI module for
performing self-shielding in the unresolved region.

In the development of the Bondarenko treatment, a narrow-resonance weighting of the form

If f(E) = PHI(E) / (sigmaT + sigma0) sigmagr(sigma0,T) = (intg[sigma(E,T) f(E) dE]) / (intg[f(E) dE])

is used, where PHI(E) is a smooth weighting function (generally 1/E in the unresolved region), T is the
temperature at which the cross sections were Doppler broadened, and sigma0 is the cross section that
accounts for the cross sections of other nuclides in the mix with the resonance nuclide.

PRUDE accepts an arbitrary number of temperatures and sigma0 values as input. At each pair of values, T
and sigma0, it makes a calculation to determine shielded cross sections. The energy mesh is chosen to be
either the energy mesh at which the unresolved parameters are specified in the ENDF/B library or at 100
points equally spaced in lethargy over the unresolved region when the parameters are constant. The output
from PRUDE is a file of records written in the ENDF/B "TABL" format, as follows:

Record 1: MAT, MF, MT, 0, 0, 0, 0, 0, 0
Record 2: MAT, MF, MT, T, sigma0 , 0, 0, NR, NP, (NBTi, JNTi, i=1, NR),
(E(i), sigma(T, sigma0), i=l, NP)
Record 3: MAT, MF, 0, 0, 0, 0, 0, 0, 0

where MAT is the material identifier, MF is the file number, MT is the process identifier, T is the
temperature in Kelvin, sigma0 is the background cross section, NR is the number of interpolation regions,
NBTi, JNTi comprise the interpolation table, and E, sigma are the energy cross section values.

Each T, sigma0 pair will generate the three records shown above for each of six processes.

MT = 1, total cross section
MT = 2, elastic scattering
MT = 102, (n,gamma)
MT = 18, fission
MT = 1000, transport cross section
MT = 4, inelastic scattering

Input DataData

Block Units

0$ Point file assignment [1]
 1. LOGP logical unit in which point data are to be written (31)

1$ Processing Option [1]

A-77

 1. NNUC Number of materials to process

Terminate block units with a T.

Stack block parameters and values one after the other NNUC times.

Block Parameters

2$ Data source and problem options [5]
 1. MATNO material number for the ENDF/B data
 2. NSIG0 number of background values
 3. NTEMP number of temperatures
 4. NDFB logical unit containing the ENDF/B data (11)
 5. MODE format of ENDF/B data (1)
 1: binary
 2: BCD

Terminate block parameters with a T.

Block Values

3* Background cross sections [NSIG0]
 1. NSIG0S Background cross sections (sigmma_0,i=1,NISG0)

Specify these values in descending order

4* Temperatures [NTEMP]
1. TEMPS TEMPERATURE (T_i,i=1,NTEMP);

Specify these values in ascending order

5* Processing options [2]
 1. EPS precision with which to combine data (1.0e-3)
 2. NEW not used (0)

Terminate block values with a T.

Sample Input

Sample Input
0$$ 31 1$$ 2 T
2$$ 9228 8 5 11 2 T
3** 1.0E10 1.0E6 1.0E4 1000 100 10 1 1.0E-5
4** 300 600 1000 1500 2000 T
2$$ 9237 8 5 12 2 T
3** 1.0E10 1.0E6 1.0E4 1000 100 10 1 1.0E-5
4** 300 600 1000 1500 2000 T

This input illustrates how to use PRUDE to create a point library of data for the unresolved energy
regions of 235U (MAT=9228) and 238U (MAT=9237). The 235U data are accessed from the BCD ENDF/ B
library on logical unit 11, while the 238U data are from the BCD ENDF/B library on logical unit 12. In
both cases, numbers for eight background cross sections and five temperatures will be produced. (Note
that PRUDE is programmed to discard any background-temperature combinations producing negative

A-78

cross section values that arise due to approximations used in the scheme that calculate self-shielded
values).

A-79

Logical Unit Parameters

Variable Unit number Type Description
LOGP binary logical unit where point data are to be

written
NDFB BCD
 14 binary scratch
 15 binary scratch
 16 binary scratch
 17 binary scratch
 18 binary scratch

A-80

A-42. PUFF_IV - MODULE TO GENERATE MG CORRELATION MATRICES

PUFF-IV is a module that reads the cross section uncertainty data from an ENDF/B library and constructs
MG correlation matrices on a user specified energy grid structure. PUFF-IV has the following features:

 Processes ENDF/B uncertainty data through Version VI

 Provides output correlation matrices in the COVERX format

 Processes short-range variance formats, as well as lumped reaction covariance formats that
were introduced in ENDF/B-V and could not be processed by PUFF-III

 Has a directory feature that provides a list of the explicitly and implicitly defined covariance
matrices from ENDF/B Files 31 and 33; also, determines if resonance parameter uncertainty
information from ENDF/B File 32 is available

 Calculates eigenvalues for each correlation matrix and tests for positive definiteness

Input Data

Block 1

-1$ Core allocation [1]
 1. LENGTH number of words to allocate (500,000)

0$ Directory flag [1]
 1. LDIR directory option (0)

If a logical unit (ldir > 0) is given, the program generates the directory
output and exits. For ldir=0 (the default), covariance matrices are
generated.

1$ Integer parameters [18]
 1. NO28 unit for COVERX formatted output (-/+ = Binary/BCD) (-1)
 2. ISS unit number for standard deviations in user group structure from standard

cross section file (0)
only used if processing LTY=1 NC sub-subsection, and the standard
cross section uncertainties must be processed apriori. A suitable file is
normally generated on unit 16 if processing a standard uncertainty file.

 3. I19 unit number for standard material ENDF uncertainty file in BCD format
(0)
only used if processing LTY=1 or 2 NC sub-subsections. I19 cannot
equal IO32

 4. IO11 unit number for AMPX master library if IXSOP=1 or TAB1 file if
IXSOP=2(0)
only used if IXSOP > 0

 5. IO32 unit number for ENDF uncertainty file in BCD format (32)
 6. MATUSE MAT number of material to process (0)
 7. IUSER number of user groups for covariance calculation (-12)
 -2: 240 group CSEWG
 -3: 99 group GAM2
 -4: 620 group SAND2

A-81

 -5: 30 group LASL
 -6: 68 group GAMI
 -7: 171 group VITAMIN-C
 -8: 26 group ORNL-5517
 -9: 100 group GE
 -10: 6 group ORNL-5318
 -12: 44 group AMPX
 other: Otherwise user input in 2# array if greater than 0. If negative and

not one of the above choices, use the number of groups in a
standard AMPX group.

 8. IXS number of groups of input cross sections (-11)
 -2: 240 group CSEWG
 -3: 99 group GAM2
 -4: 620 group SAND2
 -5: 30 group LASL
 -6: 68 group GAMI
 -7: 171 group VITAMIN-C
 -8: 26 group ORNL-5517
 -9: 100 group GE
 -10: 6 group ORNL-5318
 -11: Read from AMPX master library
 -12: 44 group AMPX
 other: Otherwise user input in 3# array if greater than 0.

Set only to give cross section data explicitly in the 4## array.
 9. IWT weighting function
 1: 1/E
 2: 1/(E * sum_{T}
 3: (1/E)*INPUT (INPUT placed in 5# array)
 4: INPUT (placed in 5# array)
 other: If less than 0 the unit of a Flux file in tab1 format

If a flux file is given, the material and reaction value of the flux
is read in the 5## array

 10. IXSOP cross section input (1)
 0: User input in 4# array
 1: AMPX master library
 2: TAB1 file containing point-wise cross section data
 11. JOPT1 Files 31 and 33 processing options (2)
 0: processes File 33
 1: processes File 31
 2: processes Files 31 and 33
 3: processes neither File 31 nor File 33
 12. JOPT2 File 32 processing options (2)
 0: does not process File 32
 1: processes File 32 as sensitivity data
 2: full resonance calculation of File 32
 13. JOPT3 option for matrix to be collapsed to user group (0)
 0: Yes
 1: No

For normal operation, the covariance matrix should be collapsed
to the user group structure. The collapsing is not wanted if a File

A-82

32 covariance matrix should be processed in preparation for
converting to File 33 format.

 14. NOX maximum number of covariance matrices in COVERX file (500)
 15. NOCVX not used
 16. NMT number of MAT-MT reaction pairs to process (-1)

If larger or equal to 0 the number of covariances to process. They are
given in Block 4. If -1 process all reaction pairs on ENDF tape

 17. NDM1 Reads integral constants (0)
 0: uses standard integral constants
 1: reads integral constants from Block 6
 18. LD8FL How an LB=8 section gets calculated (0)
 0: calculated as described in ENDF standard
 1: assumes that ratio (Delta E_{k})/(Delta E_{I}) = 1 for all k and I
 2: ignores all contributions from LB=8 sections

Terminate Block 1 with a T.

Only use Block 2 if IUSER > 0.

Block 2

2# usergrid [IUSER+1]
 1. UserGrid USER energy grid

Only used if IUSER > 0.

Terminate Block 2 with a T.

Only use Block 3 if IXS > 0.

Block 3

3# IXS_ARRAY [IXS+1]
 1. CrossGrid cross section energy grid

Only used if IXS > 0.

Terminate Block 3 with a T.

Only use Block 4 if NMT > 0.

Block 4

4# MAT-MT pairs and cross section data [NMT*2 + NMT*IXS]
 1. MATInfo material and reaction value of covariances to be calculated.

Only used if NMT > 0
 2. CrossSections cross section data for MAT-MT pairs

Only used if IXSOP = 0.

Terminate Block 4 with a T.

A-83

Only use Block 5 if ABS(IWT) > 2.

Block 5

5# IWT_ARRAY [IXS]
 1. Weights user-defined weighting factors

Only used if ABS(IWT) > 2.
If IWT is negative, the material id and the reaction id of the weighting
function to use should be given. If using an AMPX cross section library
the number of weights given has to be the same as the number of groups
on the cross section library. If using point-wise cross section data, the
number of weights must be the same as the number of groups in the
super group structure. It is recommended to use IWT<0 in this case.

Terminate Block 5 with a T.

Only use Block 6 if NDM1 = 1.

Block 6

6# THERMAL_VALUES [3]
 1. ThermalEner energy for thermal cross section in eV (0.0253)

Only used if NDM1 = 1.
 2. LowRes lower energy for resonance integral in eV (0.5)

Only used if NDM1 = 1.
 3. UppRes upper energy for resonance integral in eV (5500)

Only used if NDM1 = 1.

Terminate Block 6 with a T.

Block Title Cards

COVERX_TITLE: COVERX Title card Type: Character*72

Notes

If JOPT1=3 and File 31 or 33 are not present in the file, only the available information is processed, and
PUFF-IV prints a warning message about the missing file. Similarly, if JOPT2=2 or JOPT2=3 is specified
and File 32 is not present, the calculation proceeds as if JOPT2=0 was specified. A warning message is
printed.

Sample Input

-1$$ 400000000 e
1$$ -1 0 0 11 32 9222 -12 -11 1 1 2 2 a16 -1 e t coverx file for u233

This input prompts puff-iv to process File 31, 32 and 33 from ENDF/B file on logical unit 32. The cross
section data are taken from the AMPX library on logical unit 11. The covariances format id=9222 are
generated for the 44 AMPX group structure with a weighting of 1/E. The title for the COVERX file is
"coverx file for u233"

A-84

Logical Unit Parameters

Variable Unit number Type Description
NO28 BCD or binary unit for COVERX formatted output (-/+ =

Binary/BCD)
ISS binary unit number for standard deviations in

user group structure from standard cross
section file

I19 binary unit number for standard material ENDF
uncertainty file in BCD format

IO32 bcd unit number for ENDF uncertainty file in
BCD format

 15 random access scratch
 16 binary scratch
 17 binary scratch
 18 binary scratch
 19 binary scratch
 20 random access scratch
 21 binary scratch
 22 binary scratch
 23 binary scratch
 25 binary scratch

A-85

A-43. PURM - MODULE TO PRODUCE PROBABILITY TABLES FROM UNRESOLVED
RESONANCE DATA USING MONTE CARLO

Purm (probability tables for the unresolved region using Monte Carlo) is a module that uses a Monte
Carlo approach to calculate probability tables on an evaluator-defined energy grid in the unresolved-
resonance region (urr). For each probability table, purm samples pairs of resonances surrounding the
reference energy. The resonance distribution is sampled for each spin sequence (i.e., l-j pair), and purm
uses the Delta3-statistics test to determine the number of pairs of resonances for each spin sequence. For
each resonance, purm samples the resonance widths from a chi-square distribution for a specified number
of degrees of freedom. Once the resonance parameters are sampled, purm calculates the total, capture,
fission and scatter cross sections at the reference energy using the single-level Breit-Wigner formalism
with appropriate treatment for temperature effects. The cross section calculation constitutes a single
iteration or history. The calculation is repeated for a user-specified number of histories and batches. After
completing the specified number of histories for a batch, a batch estimate for the probability for each
cross section band within a table is obtained by dividing the number of tallies for the band by the
total number of histories processed. Additional batches are processed until the user-specified number
of batches is complete. Due to the nature of the calculational procedures, purm provides a mechanism for
monitoring the convergence of the cross section calculation. For each reaction, a plot of the calculated
cross section is provided by the batches run. Additional statistical checks are provided for each cross
section calculation.

Note that purm should only be used to process individual isotope evaluations, and it should not be used to
process nuclide evaluations with multiple isotopes with unresolved-resonance regions.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
logp= 31 output unit for the probability table
bond= 32 output unit for the Bondarenko factors

Repeat block nuclide as often as needed.

Block nuclide

Block starts on encountering nuc.

Block terminates on encountering enuc.

A-86

Keyword Alternate Default Definition
nbatch= 300 number of batches to run
iter= 600 number of iterations per batch
nband= 20 number of bands to create
mat= ENDF material number
ndfb= logical unit of ENDF file to process
temp= space-separated list of temperature(s) in Kelvin at which

probability tables are desired
sig0= space-separated list of background values for the Bondarenko

factors
equ If present, bands are equiprobable.
eps= 0.001 precision to which to create the mesh if adding cross section data
extra= 0 number of points to add between energies given in the ENDF file

Logical Unit Parameters

Variable Unit number Type Description
ndfb
logp

 binary
binary

output unit for the probability

logb binary table

A-87

A-44. PURM_UP - CORRECT PROBABILITY TABLES FOR FILE 3 CONTRIBUTIONS.

The module purm generates probability tables at the energies of references given in the ENDF/B
formatted file. It does not take File 3 (smooth) cross section contribution into account. This module adds or
multiplies with the File 3 cross section data, depending on the flag set in the ENDF/B formatted file.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in= 31 input unit for tables generated by PURM
out= 32 output unit for updated probability tables
ndfb= 11 logical unit of ENDF file to process
matf= material number of tables generated by purm and in endf
matp= material number desired on output file
eps= 0.001 precision to which to create the mesh if adding cross section data

Logical Unit Parameters

Variable Unit number Type Description
ndfb binary logical unit of ENDF file to process
in binary input unit for tables generated by purme
out binary output unit for updated probability tables

A-88

A-45. RADE - MODULE TO CHECK AMPX MASTER CROSS SECTION LIBRARIES

RADE (Rancid AMPX Data Exposer) is provided to check AMPX- and ANISN-formatted MG libraries.
It will check neutron, gamma, or coupled neutron-gamma libraries. Some of the more important checks are
made to ensure that:

 sigma_{t} = sigma_{a} + sigma_{s}

 sigma_{in} = sum(sigma_{in}^{partial})

 sigma_{a} = sigma_{c} + sigma_{f}

 sigma_{c} = sigma_{n,gamma} + sigma_{n,alpha} +sigma_{n,p} + sigma_{n,d} + ...

 sigma_{el}^{g} = sum(sigma_{el}(g -> g')

 sigma_{0}(g -> g') > 0

 sigma_{t}, sigma_{a}, sigma_{f}, sigma_{n,gamma}, sigma_{n,p},... > 0

 f_{l}^{min} < f_{l}(g -> g') <= 1.0
where f_{l}(g -> g' = [sigma_{l}(g -> g')]/[(2l+1) sigma_{0}(g -> g')]
and f_{l}^{min} = -1.0 for all odd l and for even l

 l=2 - f_{l}^{min} = -0.5

 l=4 - f_{l}^{min} = -0.433

 l=6 - f_{l}^{min} = -0.419

 l=8 - f_{l}^{min} = -0.414

In addition to these checks, the code will compute an estimate of the capture-binding energy for each
neutron group in a coupled neutron-gamma set. On option, one can request a display of differential cross
sections.

Input Data

Block 1

-1$ Core assignment [1]
 1. NWORD number of words to allocate (100,000)

1$ Checking commands [4]
 1. MMT checks the AMPX master interface on logical MMT (0)

(can be a neutron, gamma, or a coupled neutron-gamma library)
 2. MWT checks the AMPX working/weighted interface on logical MWT (0)
 3. MAN checks the ANISN binary-formatted library on logical MAN (0)
 4. IFM formats of the ANISN library
 -1: ANISN library is binary formatted.
 0: ANISN library is BCD free form.
 1: ANISN library is BCD fixed form

A-89

2$ Options [20]
 1. numAng number of angles at which a display of differential cross sections is

desired (0)
These angles will be equally spaced in the cosine range, -1 to +1. These
edits are for the group-integrated cross sections and not for each group-
to-group transfer

 2. eps the epsilon in 1/1000s of a percent, to which checks are made (1)
That is eps=1 is equivalent to 0.001% checking. This is the default value
when eps is not entered or when a zero value is entered.

 3. printbind print option
 0: prints the estimated binding energy table
 1: suppresses printing the estimated binding energy tables for

processes with gamma production data
 3. OPT3 not used

3$ ANISN Options [7]
 1. NSET number of ANISN nuclides to check
 2. IHT position of sigma_{T} if checking ANISN library
 3. IHS position of sigma_{g} if checking ANISN library
 4. ITL table length if checking ANISN library
 5. NL maximum order of scattering if checking ANISN library
 6. IGM number of neutron groups if checking ANISN library
 7. IPM number of photon groups if checking ANISN library

Terminate Block 1 with a T.

Only use Block 2 if MAN != 0.

Block 2

4$ Identification numbers of P0 sets [NSET]
 1. IDPO identification numbers of P0 sets on ANISN binary library on logical

MAN
Only used if MAN != 0.

5$ Order of scattering for sets [NSET]
 1. ISOR order of scattering for sets of ANISN data on logical MAN

Only used if MAN != 0.

7* Neutron group structure [IGM+1]
 1. NGS neutron group structure

Only used if MAN != 0.
order high to low in eV

8* Neutron group structure [IPM+1]
 1. GGS gamma group structure

Only used if MAN != 0.

order high to low in eV Terminate Block 2 with a T.

A-90

Sample Input

1$$ 1 E T

This input instructs RADE to perform consistency checks on the data on the master library on logical
unit 1.

Logical Unit Parameters

Variable Unit number Type Description
MMT master library checks the AMPX master interface on

logical MMT
MWT working library checks the AMPX working/ weighted

interface on logical
 MWT
MAT ANISN library
 18 binary scratch
 19 binary scratch

A-91

A-46. SIMONIZE

SIMONIZE is a module that collects classes of data (resonance parameters, neutron data, gamma data,
gamma production data, thermal scattering matrices, etc.) from an arbitrary number of AMPX master
formatted data sources and combines them into a single comprehensive collection (i.e., a master library
that contains all the data wanted) for a nuclide. At the same time, SIMONIZE normalizes and rearranges
data to make a set of data that are ready for use in transport calculations or other applications.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
IDENTIFIER= identifier of the collection of data on the master

library
MASTER= 1 logical unit onto which the data will be written
TITLE= title to use for the data

SIMONIZE will use the title from the NEUTRON data files if a
TITLE is not supplied, which will be the most common situation.

za= overrides ZA value of the nuclide
fastid= overrides id identification for fast data
thermid= overrides id identification of thermal data
gamid= overrides id identification of photon data
yieldid= overrides id identification of photon yield data
source= 0 source of the data as defined in the ENDF manual
small1d= 1.0e-12 1-D cross sections smaller than this are set to zero
small2d= 1.0e-12 2-D cross sections smaller than this are set to zero
kipratio If not present, apply correction to MT=1007 if not a moderator, to

mt=2 otherwise.
skipnorm does not recalculate redundant cross sections
skipscatter does not correct matrices for upsscatter
oldza If present, convert the za value to the za values used for SCALE

6.1 and earlier.

Repeat block data descriptions as often as needed.

Block Data descriptions

Block starts on first encounter of a keyword in the block.

A-92

Keyword Alternate Default Definition
Select one of these
 NEUTRON unit containing a collection of neutron data
 GAMMA unit containing a collection of gamma-ray data
 YIELD unit containing a collection of gamma-ray yield data
 BONDARENKO unit containing Bondarenko factor data
 1DN unit containing averaged neutron data
 2DN unit containing neutron scattering matrices
 1DG unit containing averaged photon data
 2DG unit containing photon scattering matrices
 2DY unit containing photon production matrices
MODERATOR special keyword used to signal that the data originate from a

thermal ENDF/B evaluation
ID19= the identifier of the data on the logical unit that currently

processed
mt= list of reaction values to include or exclude

If all mt values are positive, the listed mt values will be selected
from the partial library and added to the new library. If all mt
values are negative, the listed mt values are excluded from the
new library.

Sample Input

Identifier=92234 master=1 source=0
Neutron=20 id19=92234
Bondarenko=36 id19=9221
2dn=21 id19=92234

This input tells SIMONIZE to combine NEUTRON data produced by X10 that is located on logical unit
20 and identified by 92234 with thermal scattering data located on logical unit 21 identified by 92234,
and with Bondarenko Factor Data on logical unit 36 identified by 9221 to create an AMPX master on
logical unit 1 with a nuclide identifier of 92234.

Logical Unit Parameters

Variable Unit number Type Description
MASTER binary logical unit onto which the data will be written
NEUTRON binary
GAMMA binary
YIELD binary
BONDARENKO binary
1DN binary
2DN binary
1DG binary
2DG binary
2DY binary

A-93

A-47. SMILER - AMPX MODULE TO CONVERT NJOY GENDF FILES TO AMPX MASTER
LIBRARIES

The SMILER module (Second MILER*) was written to circumvent inefficiencies observed in the use of
the original code.

MILER1 provides a means of converting group-averaged cross sections from the NJOY2 system for use
by modules written for the AMPX system. By default, NJOY writes these data in a format called the
GENDF format, which is an ENDF/B-like format.

SMILER is not a revision of MILER, but it is a response to the observation that many situations will cause
MILER to require exorbitant I/O operations to convert between GENDF format and the AMPX master
library format. SMILER uses procedures that take advantage of the current large-computer memories,
allowing the user to liberally use core-size allocations. This is in contrast to previous processes in which
the user shuttled data in and out of the core to accommodate many problems. Because of this change in
programming style, SMILER uses simpler procedures than previously employed, thereby making it
more compact and easier to maintain.

As with MILER, SMILER requires little input over simply specifying the GENDF files to be combined
and converted. Like MILER, a SMILER run produces cross sections for only one nuclide. These one-
nuclide master libraries can be easily collected by the AJAX module. SMILER accepts the BCD or binary
formats of GENDF files.

Note that no code which prepares an AMPX master library should include an array identified by 1452 in
the 1-D arrays. SMILER does not include it and should never be modified to do this, as it will result in
completely erroneous results when used in some code combinations.

Input Data

Block 1

0$ Logical Assignments [3]
 1. MMT logical unit of AMPX master interface (1)
 2. MG1 first GENDF file (0)
 3. MG2 second GENDF file(0)
 4. MG3 third GENDF file(0)

 Note that because photon-only GENDF files do not strictly follow the
GENDF format specifications and specify the number of photon groups
in the word designation for the number of neutron groups, MG3 is
reserved as the location for this type of file. Logical units MG1 and MG2
can both contain either neutron-only or coupled neutron-gamma data.
Borrowing an idea from MILER, positive values for MG1, MG2, MG3
are used for BCD files, whereas negative values are used for binary files.

1$ Nuclide identifier and direct-access file status [2]
 1. ID19 identifier of the set of data produced by SMILER (1)
 2. N9STAT not used (0)

2$ NJOY/AMPX thermal identifier correspondence list [100]

A-94

 1. NJID NJOY/AMPX thermal identifier correspondence list (221 1007 222 1008
e)

Up to 50 doublets give the NJOY identifiers for a thermal-scattering
process, followed by its corresponding AMPX identifier. By default, this
array contains 221 1007 222 1008, followed by 96 zeroes, which
indicates that an AMPX identifier of 1007 should be used on the arrays
which NJOY identifies with 221 and 1008 on those identified by 222.

Terminate Block 1 with a T.

Notes

Converting between different MG cross section formats is a very common requirement, but there is a
wide variety of choices that one can make in designing a format.

The differences in GENDF and AMPX formats clearly demonstrate areas that can be different.

1. The ordering of energy groups differs. Traditionally, group 1 is the highest energy group, as it is in
the AMPX master interface. In GENDF, group 1 is the lowest energy group.

2. The Legendre coefficients in scattering matrices in the AMPX master interface include the (2l + 1)
multiplier following conventions established for the ANISN and DOT programs in the mid-1960s.
GENDF does not.

3. The matrices for reactions that produce multiple secondary particles, such as n2n, contain the
multiplicity on GENDF. In AMPX, they do not.

4. The units of temperatures associated with scattering matrices are in eV in AMPX vs. Kelvin in
GENDF.

5. Various process identifiers for averaged cross sections must be carefully monitored in order to
interact properly with various AMPX modules. For example, the GENDF-scattering matrices for
fission are identified by MT = 18, but use of this identifier on the AMPX master interface would lead
to undesirable results, and it is redefined to be 9018. Likewise, MT = 221 . . . for thermal-scattering
processes are converted to MT = 1007, 1008. . . to interface with the AMPX procedures.

6. The fission spectrum on the GENDF file is in scattering-matrix form (a more correct form), whereas it
is generally expected to be a single array on the AMPX interface.

The basic procedure in SMILER is very simple. Note that even though a GENDF file can contain many
(up to the number of groups) collections of records for a process at a single temperature, these can be
collected into a single record before they are shuttled to a direct-access scratch file. Furthermore, if one
chooses a procedure that constructs all of the matrices for Legendre coefficients of scattering processes in
core prior to writing to the direct access file, the requisite I/O operations are minimized.

Sample Input

0$$ 1 2 0 0 1$$ 92235 E T

A-95

This input will create an AMPX master library on logical unit 1 for 235U data taken from the NJOY
GENDF file on logical unit 2. (Note that SMILER only processes one nuclide at a time so that the
identifier of the data on GENDF is not required; i.e., the GENDF file must be for only one nuclide.)

Logical Unit Parameters

Variable Unit number Type Description
MMT binary logical unit of AMPX master
 interface
MG1 binary first GENDF file
MG2 binary second GENDF file
MG3 binary third GENDF file
 9 direct access scratch

A-96

A-48. SPLICER - SETS THE FUNCTIONS ON A TAB1 FILE TO ZERO BETWEEN EL AND
EH, OR CHOP TO THE GIVEN RANGE, OR SPLICE WITH DATA

SPLICER sets the functions on a TAB1 file to zero between el and eh. It is recommended to use the DCON
module following the use of SPLICER to make sure the partials sum to the appropriate total values.

Input Data

Block Specifications

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
in1= 31 input TAB1 file
in2= 0 input TAB1 file
out= 33 output TAB1 file
el= 1.0e-5 lower energy value of range to zero

negative lower energy causes the lowest energy of the tab1 data
in unit IN1 to be picked

eh= 3.0e7 upper energy value of range to work on
option= 1 procedure to perform

1 - splices the data on in2 between el and eh
0 - zeroes data between el and eh
-1 - only copys data between el and eh

Sample Input

in1=31 el=1e-5 eh=3.0 out=33 option=0

All values between 1e-5 eV and 3.0 eV should be set to zero on the data on logical unit 31 and saved
on logical unit 33.

Sample Input

in1=31 el=1e-5 eh=3.0 option=-1 out=33

Only the values between 1e-5 eV and 3.0 eV are copied on the data on logical unit 31, and they are
saved on logical unit 33.

Sample Input

in1=31 in2=33 el=1e-5 eh=3.0 option=1 out=35

If material, reaction and temperature match, data on logical unit 33 are spliced into the data on file 31 in
the range 1e-5 eV to 3 eV. The output data are saved on logical unit 35.

A-97

Logical Unit Parameters

Variable Unit number Type Description
out
in in

 binary
binary
binary

output TAB1 file

A-98

A-49. TABASCO - MODULE TO READ FUNCTIONS FROM AN AMPX MASTER LIBRARY
AND WRITE THEM TO A TAB1 FILE AS HISTOGRAMS

TABASCO (TAB1 functions from AMPX/SCALE Master Libraries originally) is a module one can use to
extract data from an AMPX master library and have it written onto a single precision binary TAB1 library as
histograms equivalent to the averaged values in the master library. These histograms can then be plotted or
used in other applications that need these data.

Input Data

Block 1

-1$ Indicates whether worker [1]
 1. worker If negative, a working library is read. (1)

0$ Logical unit assignments [2]
 1. MMT the logical unit of the input AMPX Master file (31)
 2. LOGOUT the logical unit of the output TAB1 file (32)

1$ Number of classes of data to select [1]
 1. NCOM the number of classes of data to select

Terminate block 1 with a T.

Block 2

2$ Identifiers of materials selected [NCOM]
 1. MATS Identifiers of Materials selected

Zero entry selects everything

3$ Process identifiers selected [NCOM]
 1. MTS Process Identifiers selected

Zero entry selects everything

4$ Not used [NCOM]
 1. NNUSED1 Not used

5* Temperatures selected [NCOM]
 1. NNUSED2 Not used

6* Sig0s selected [NCOM]
 1. NNUSED3 Not used

Terminate Block 2 with a T.

Sample Input

0$$ 23 24 1$$ 2 T
2$$ 1395 1398 3$$ 1 0 T

A-99

This input indicates that data should be read from the AMPX master library on logical unit 23, and data
should be written to a TAB1 file on logical unit 24. The total cross section (MT=1) for MAT=1395 is
selected, and all processes are selected for MAT=1398.

Logical Unit Parameters

Variable Unit number Type Description
NMT
LOGOUT

 binary
binary

logical unit of the output
TAB1 file

A-100

A-50. TGEL - MODULE TO CALCULATE TOTAL CROSS SECTIONS FOR FUNCTIONS
WRITTEN IN TAB1 FORMAT

The module tgel is a program that will add up partial cross sections to form either an elastic
(MT=1007+MT=1008), inelastic, capture, absorption, nonelastic, or total cross section. This ensures that
values for redundant cross sections are consistent.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
input= 1 single or double precision input TAB1 file
output= 2 single or double precision output TAB1 file
eps= 1e-4 precision to which to calculate cross section data
total reconstruct total cross section
capture reconstruct capture cross section
absorption reconstruct absorption cross section
inelastic reconstruct inelastic cross section
thermal reconstruct thermal cross section
nonelastic reconstruct nonelastic cross section

Logical Unit Parameters

Variable Unit number Type Description
input binary single or double precision
 input TAB1 file
output binary single or double precision
 output TAB1 File
 99 binary scratch

A-101

A-51. TOMATO - MODULE TO CHANGE MATERIAL IDENTIFIERS (MAT NUMBERS) ON
A TAB1 FILE

TOMATO (Toss MAT numbers on a TAB1 file) is a module that allows the user to change the material
identifiers (MAT numbers) on a TAB1 file. Isolating this simple functionality makes it much easier to
develop and use other modules, such as the SPLICER module.

Input Data

Block 1

-1$ Core allocation [1]
 1. ICORE not used (50000)

0$ Logical unit assignments [2]
 1. LOGIN logical unit of the input TAB1 file (31)
 2. LOGOUT logical unit of the output TAB1 file (32)

1$ Number of materials to change [3]
 1. NMAT number of materials whose identifiers should be changed (0)
 2. NMT number of reactions whose identifiers should be changed (0)
 3. NMF number of file numbers whose identifiers should be changed (0)

Terminate block 1 with a T.

Block 2

2$ Identifiers of materials whose identifiers should be changed [NMAT]
 1. NMATold identifiers of materials whose identifiers should be changed

only used if NMAT > 0

3$ New identifiers for the material [NMAT]
 1. NMATnew new identifiers for the material.

only used if NMAT > 0

4$ Identifiers of reactions whose identifiers should be changed [NMT].
 1. NMTold identifiers of reactions whose identifiers should be changed

only used if NMT > 0

5$ New identifiers for the reactions [NMT]
 1. NMTnew new identifiers for the reactions

only used if NMT > 0

6$ Identifiers of file numbers whose identifiers should be changed [NMF]
 1. NMFold identifiers of file numbers whose identifiers should be changed

only used if NMF > 0

7$ New Identifiers for the file numbers [NMF]
 1. NMFnew new identifiers for the file numbers

only used if NMF > 0

Terminate block 2 with a T.

A-102

Sample Input

-1$$ 500000 0$$ 23 24 1$$ 2 T
2$$ 1395 1398 3$$ 1495 1498 T

This input indicates that 500,000 words of core should be allocated to TOMATO and that data should be
read from the TAB1 library on logical unit 23, and data should be written to a new file on logical unit 24. The
identifiers on the original library are changed from 1395 to 1495 and from 1398 to 1498. Other than these
two nuclides, all will be copied with their identifiers unchanged.

Logical Unit Parameters

Variable Unit number Type Description
LOGIN
LOGOUT

 binary tab1 file
binary tab1 file

logical unit of the input TAB1 file
logical unit of the output TAB1 file

A-103

A-52. WORM - AMPX MODULE TO CONVERT AN AMPX WORKING LIBRARY TO AN
AMPX MASTER LIBRARY

WORM (Working to Master Converter) is an AMPX module that converts a binary AMPX working
library into a binary AMPX master library. WORM works with any working library to produce a master
library containing neutron and/or gamma and/or gamma-production information. In the case of the
working library containing more than one of the above types of data, WORM automatically splits the
transfer matrices so that all neutron data are carried together and identified by MT = 1, gamma production
data are carried together and identified by MT = 1, and, likewise, gamma data are carried together and
identified by MT = 501. One-dimensional (reaction averages) cross sections are carried on a process-by-
process basis, exactly as in the master library. Only the total transfer matrices are available, since it is
impossible to split out individual transfer processes in a general manner once they are added together to
produce the working library.

Input Data

Block 1

-1$ Core allocation [1]
 1. ICORE number of words to allocate to WORM (50,000)

0$ Logical unit assignments [1]
 1. MMT master library is written on this logical unit. (1)
 2. MWT working library is mounted on this logical unit. (4)

Terminate Block 1 with a T.

Sample Input

0$$ 1 2 T

This input instructs WORM to convert the sets of data on the AMPX working library on logical unit 2 into
the formats used on an AMPX master library and to write them on logical unit 1.

Logical Unit Parameters

Variable Unit number Type Description

MMT
MWT

 binary
binary

Master library is written on this logical unit.
Working library is mounted on this logical
unit.

 17 binary scratch
 18 binary scratch

A-104

A-53. X10 - MODULE TO PRODUCE MG LIBRARIES FROM THREE TABULAR FILES

X10 is the AMPX module for generating MG libraries. In its present form, it only generates neutron
interaction, gamma-ray yield, or gamma-ray interaction cross sections.

Because there were three independent situations (neutron-neutron, gamma-gamma, and neutron-gamma) to
address and because production capabilities were expected to accommodate other types of coupling (for
example, neutrons produced by gamma rays), the design choice was a single system that is expandable to
cover situations not previously addressed.

X10 can accomplish the above goals by accepting data from three tabular files:

1. a file in TAB1 format that contains point cross sections,

2. a file in TAB1 format that contains a smooth weighting function, and

3. a tabular kinematics file generated by Y12.

X10 does not do physics; all kinematic data are in the LAB and in fully double differential form given in
Legendre order or cosine moments. Since all processes for all particles use the same coding, it can be
argued that the code will be easier to maintain since, in most situations, one can argue that the code will
either work correctly or will always work incorrectly.

Another difference in the way X10 calculates transfer matrices is that it always uses a group structure for
the source particle and another for the sink particle. The coding is performed in a manner that always
considers the source group structure when making integrations for the interacting particle, and it always
considers the sink group structure when making integrations for the particle that is produces, even when the
two particles are the same. Nothing informs the integration routines that they are dealing with neutrons,
photons, protons, etc.. In fact, the simple observation is made that these routines can be used to produce
energy- absorption coefficients (or dose factors) simply by specifying the energy absorbed when a particle
undergoes a particular type of reaction. Though it may have no practical application, one could go further
and specify a group structure for the dose factors, which would also be a functions of scattering angle, just
like typical scattering matrices.

The same routines that calculate scattering matrices also calculate averaged cross sections and
multiplicities, such as nu-bar (which must be weighted by a combination of a cross section times a flux).
This procedure makes it easier to ensure consistency between group-averaged values and transfer
matrices.

Note that X10 never reads an ENDF/B library. Other modules (POLIDENT and Y12, for example) read
these and produce point cross section files and kinematics files.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

A-105

Keyword Alternate Default Definition
type= neutron execution mode for x10

neutron - generates neutron interaction data
yield - generates gamma-ray yield data
gamma - generates gamma-ray interaction data

tab1= 32 logical unit containing the Doppler-broadened point data
logwt= 30 logical unit containing the pointwise weighting function
matwt= 99 material for the weighting function
mtwt= 1099 reaction for the weighting function
logebdry= 77 logical unit for file containing energy boundary information
master= 1 logical unit for output AMPX master
title= title to use for the AMPX master
kin= 0 logical unit containing kinematic data
id= 0 id of material to process on point-wise and kinematic file
nl= 5 maximum Legendre order in final master
igm= 0 number of neutron groups to use
iftg= 0 number of first thermal group
ipm= 0 number of gamma groups to use
eps= 1e-5 Precision at which to construct the mesh
pot= 0.0 potential scattering cross section to write into master
upscatter If present, add an upscatter correction for thermal point-wise data
eup= 3.0 if performing upscatter correction, the energy at which correction

starts
eterm= 5.0 if performing upscatter correction, the energy at which all

upscatter is eliminated

Logical Unit Parameters

Variable Unit number Type Description
tab1 binary logical unit containing the Doppler-broadened

point data
logwt binary logical unit containing the pointwise weighting

function
logebdry binary logical unit for file containing energy boundary

information
kin binary logical unit containing kinematic data
master binary logical unit for output AMPX master

A-106

A-54. Y12 - CREATE KINEMATIC DATA FILES

This module creates kinematic files for incident neutron and gamma data, as well as thermal moderators.
Y12 saves the kinematic file in cosine moments or Legendre moments for use in MG processing or as
point-wise kinematic data for use in CE library processing.

Input Data

Block Input

Block starts on first encounter of a keyword in the block.

Keyword Alternate Default Definition
ndf= 11 logical unit of ENDF file to process
mat= material number to process
kin= 31 logical unit of output kinematic file
point= -1 logical unit of file containing 1-D point data

If less or equal to 0, the point wise data will not be generated.
id= -1 ID to be used on the kinematic and 1-D point file

If less or equal to 0, this will be the same as the mat number on
ENDF.

eps= 1e-3 precision at which to generate the grid
nl= 5 if saving in Legendre coefficients of cosine moments, the number

of moments to generate
emax= 5.05 if processing thermal moderator data or free gas data, the upper

energy limit
emin= 1e-5 if processing thermal moderator data or free gas data, the lower

energy limit
free if present, generates free gas data
awr= if processing free gas, the mass ratio to use
pot= if processing free gas, the free atom scattering cross section
temp= space-separated list of temperature(s) in Kelvin at which to

generate free gas data
coform= yes option to apply the form factor for Klein-Nishina scattering

yes - applies the factor
no - does not apply the factor

awp= If given, kinematic data should only be processed for particles with
this mass ratio.

zap= If given, kinematic data should only be processed for particles with
this ZA value.

for= tab desired output format
tab - generates tabulated double differential data
cos - generates data in cosine moments
leg - generates data in Legendre coefficients

A-107

Logical Unit Parameters

Variable Unit number Type Description
kin

ndf

 binary

binary

logical unit of output kinematic file

logical unit of ENDF file to process

A-108

A-55. ZEST - MODULE TO MANAGE STRING LIBRARIES

ZEST (Zippy ensembler of strings) is a module analogous to AJAX, except ZEST uses string libraries
such as those produced by POLIDENT. A string is a TAB l record in ENDF nomenclature. Options are
provided to allow merging from any number of files in a manner to allow the user to determine the final
nuclide ordering, if desired.

Input Data

Block 1

-1$ Core assignment [1]
 1. NWORD not used (50000)

0$ Logical assignments [2]
 1. LOG logical number of library to be written (31)
 2. LBIG writes out in single or double precision (0)
 0: double
 1: single

1$ Library Selector [1]
 1. NLOG number of commands (or libraries) required to create LOG (1) Terminate

block 1 with a T.

Stack Block 2 and 3 one after the other NLOG times.

Block 2

2$ Input library selection [2]
 1. NLIN logical number of input library
 2. NC how the strings are to be treated (0)
  -N: deletes N strings from NLIN to create LOG.
  0: accepts all strings from NLIN.
  N: adds N strings from NLIN to create LOG

Terminate Block 2 with a T.

Only use Block 3 if NC != 0.

Block 3

3$ MAT numbers From NC [NC]
 1. MAT material identifier(s) of nuclides to be added or deleted. (0)

Only used if NC != 0
There must be exactly NC values.

4$ MT numbers from NC [NC]
 1. MT reaction identifier(s) of nuclides to be added or deleted. (0) Only used if

NC != 0.
There must be exactly NC values.

A-109

5$ MF numbers from NC [NC]
 1. MF File identifier(s) of nuclides to be added or deleted. (0) Only used if NC

!= 0.
There must be exactly NC values.

6$ New MAT numbers from NC [NC]
 1. MATnew New material identifier(s) of nuclides to be added. (0) Only used if NC >

0.
A zero leaves the identifier unchanged.

7$ New MT numbers from NC [NC]
 1. MTnew New reaction identifier(s) of nuclides to be added. (0) Only used if NC >

0.
A zero leaves the identifier unchanged.

8$ New MF numbers from NC [NC]
 1. MFnew New file identifier(s) of nuclides to be added. (0) Only used if NC > 0.

A zero leaves the identifier unchanged

Terminate Block 3 with a T.

Sample Input

0$$ 31 0 1$$ 10 T
2$$ 21 0 T
2$$ 22 0 T
2$$ 23 0 T
2$$ 24 0 T
2$$ 25 0 T
2$$ 26 0 T
2$$ 27 0 T
2$$ 28 0 T
2$$ 29 0 T
2$$ 30 0 T

This input instructs ZEST to combine the contents of the ten-point cross section libraries on logical units
21–30 onto a single point cross section library on logical unit 31. Note that the order in which the point
cross section libraries are accessed determines the ordering on the output library so that a case like this
can be used to force an ordering.

Logical Unit Parameters

Variable Unit number Type Description
LOG

NLIN

 Binary

Binary

Logical number of library to be
written

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. INTRODUCTION
	1.1 HISTORY

	2. OVERVIEW
	2.1 WHAT ARE CROSS SECTIONS?
	2.2 THE MG APPROACH
	2.2.1 MG Structure
	2.2.2 Weighting Spectrum Selection
	2.2.3 Point Cross Sections
	2.2.3.1 Resolved Resonance Region
	2.2.3.2 Unresolved Resonance Region

	2.2.4 Scattering Kinematics

	2.3 CE LIBRARIES
	2.4 THE MODULAR CONCEPT
	2.4.1 Execution Sequences

	3. PROCESSING ENDF DATA
	3.1 CREATING AN MG LIBRARY
	3.2 CREATING A CE LIBRARY

	4. USING EXSITE
	4.1 CREATE AN XML LISTING
	4.2 USING TEMPLATES
	4.3 EDIT INPUT FILES

	5. DATA STRUCTURES
	5.1 POINT-WISE DATA
	5.1.1 1-D data
	5.1.2 Kinematic data
	5.1.3 Mesh generation
	5.1.4 Interpolation
	5.1.4.1 Interpolating in exit energy
	5.1.4.2 Interpolation in incident energy

	5.1.5 Comparison
	5.1.6 Conversion for kinematic data

	5.2 GROUP-AVERAGED DATA
	5.3 PROBABILITY DATA

	6. NOTES ON SOME OF THE MODULES
	6.1 POLIDENT
	6.2 TGEL
	6.3 Y12
	6.3.1 Processing of ENDF Tapes
	6.3.1.1 Energy distributions
	6.3.1.2 Kalbach-Mann formalism
	6.3.1.3 N-Body Phase-space distribution
	6.3.1.4 Coherent elastic thermal neutron scattering
	6.3.1.5 Incoherent elastic thermal neutron scattering
	6.3.1.6 Incoherent inelastic thermal neutron scattering
	6.3.1.7 Incoherent Scattering for incident gammas
	6.3.1.8 Coherent Scattering for incident gammas
	6.3.1.9 Pair production for incident gammas
	6.3.1.10 Photon production for incident neutrons

	6.4 JERGENS
	6.5 PURM AND PURM_UP
	6.6 PRUDE
	6.7 X10
	6.8 FABULOUS
	6.9 LAMBDA
	6.10 SIMONIZE
	6.11 JAMAICAN
	6.12 PLATINUM
	6.13 PUFF-IV
	6.13.1 Point-wise covariance for cross section data
	6.13.2 Resolved resonance covariance matrix
	6.13.3 Unresolved resonance covariance matrix
	6.13.4 Exit energy covariance matrix

	7. MISCELLANEOUS USEFUL INFORMATION
	7.1 PROCESSING OF ENDF TAPES
	7.2 FILE FORMATS USED IN AMPX
	7.2.1 Tab1 formats
	7.2.2 Kinematics file
	7.2.3 MASTER LIBRARY AND WORKING LIBRARY FORMATS
	7.2.4 CE library format
	7.2.4.1 Cross section file format
	7.2.4.2 AMPX/SCALE header information block
	7.2.4.3 Header information block
	7.2.4.4 block (if LFI=1)
	7.2.4.5 MT block
	7.2.4.6 Unionized energy grid block
	7.2.4.7 CE cross section block
	7.2.4.8 Energy-dependent collision probabilities
	7.2.4.9 Forward kinematics data block
	7.2.4.10 Forward kinematics block
	7.2.4.11 Probability table block

	7.3 REACTION TYPE IDENTIFIERS
	7.3.1 Multiplicity matrices
	7.3.2 Additional Reaction values used in AMPX

	7.4 MISCELLEANEOUS USEFUL INPUT FILES
	7.4.1 Print 1-D cross section data from AMPX master or working library
	7.4.2 Convert (x,y) data into a weighting function file

	7.5 INTEGRATION ROUTINES IN AMPX6

	8. INPUT FILE GENERATION
	8.1 AUTOMATIC INPUT FILE GENERATION
	8.1.1 ENDF listing
	8.1.1.1 Special nuclei
	8.1.1.2 Meta stable nuclei
	8.1.1.3 Thermal moderators

	8.1.2 Templates

	8.2 EXSITE FILES
	8.2.1.1 Examples
	8.2.1.2 Template files

	8.3 GENERATING MODULE INPUT AND PDF INPUT

	9. INSTALLATION
	9.1 RECOMMENDED INSTALLATION PROCEDURE
	9.2 MAC OSX

	10. FIDO INPUT
	10.1 INTRODUCTION
	10.2 FIXED-FIELD INPUT
	10.3 FREE-FIELD INPUT
	10.4 USER-FIELD INPUT
	10.5 CHARACTER INPUT

	11. REFERENCES
	APPENDIX A. APMX INPUT INSTRUCTIONS

	APPENDIX A. AMPX INSTRUCTIONS
	A-1. ajax - MODULE TO MERGE, COLLECT, ASSEMBLE, REORDER, JOIN, COPY SELECTED NUCLIDES FROM AMPX WINTERFACES
	A-2. alpo - MODULE FOR PRODUCING ANISN LIBRARIES FROM AMPX WORKING LIBRARIES
	A-3. broaden - MODULE TO DOPPLER BROADEN TAB1 FUNCTIONS
	A-4. cadillac - (Combine All Data Identifiers Listed in Logical Ampx Coverx- format)
	A-5. camels - MODULE TO COMPARE AMPX MASTER or working LIBRARIES
	A-6. ceextract - Extract data out of a CE library
	A-7. charmin - MODULE TO CONVERT TAB1 LIBRARIES FROM SINGLE TO DOUBLE PRECISION, TO TEXT, OR FROM ANY OF THESE FORMATS TO ANY OF THE OTHERS
	A-8. clarol - A MODULE TO REPLACE CROSS SECTIONS ON AN AMPX MASTER INTERFACE
	A-9. cognac - Conversion Operations for Group-dependent Nuclides in Ampx Coverx-format
	A-10. combine - Add, subtract, multiply or divide tab1 files
	A-11. compare - MODULE TO COMPARE FUNCTIONS ON TWO TAB1 FILES
	A-12. compress - MODULE TO COMPRESS FUNCTIONS WRITTEN IN TAB1 FORMAT
	A-13. covcomp - Compare two coverx file or add coverx files according to a given percentage
	A-14. covconv - Program to convert File 32 resonance data into File 33 format
	A-15. coverr - Program to convert coverx files to errorr covariance files
	A-16. fabulous_urr - MODULE TO PRODUCE BONDARENKO FACTOR TABLES
	A-17. fabulous - MODULE TO PRODUCE BONDARENKO FACTOR TABLES
	A-18. filter - Select specific data from a master of working library
	A-19. funccalc - Calculate arbitrary function
	A-20. irffachomo - MODULE TO PRODUCE HOMOGENOUS F-Factors
	A-21. irffactor - Module to calculate intermediate resonance f-factors based on hetero cells
	A-22. jAmaican - Module to thin point-wise 2-d data
	A-23. jergens - MODULE TO GENERATE WEIGHT FUNCTIONS AND TO COMBINE ENDF/B TAB1 RECORDS
	A-24. kinkos - KINematics KOnversion System
	A-25. kinzest - MODULE TO MANAGE kinematic libraries
	A-26. lambda - MODULE TO PRODUCE LAMBDA FACTORS
	A-27. lava - AMPX MODULE TO MAKE AN AMPX WORKING LIBRARY FROM AN ANISN LIBRARY
	A-28. linear - MODULE TO LINEARIZE FUNCTIONS WRITTEN IN TAB1 FORMAT
	A-29. lipton - Convert ASCII ENDF/B File that contains File 3, 9 and 10 to Binary
	A-30. makpen - MODULE TO GENERATE CROSS SECTION DATA IN A PENDF FORMAT
	A-31. malocs - MODULE TO COLLAPSE AMPX MASTER CROSS SECTION LIBRARIES
	A-32. malt - Make ANISN Library TransFormation
	A-33. mg_to_kin - Convert total MG scattering matrix to CE
	A-34. paleale - IMPROVED MODULE FOR PRINTING DATA FROM AMPX LIBRARIES
	A-35. extract - MODULE TO READ AN NJOY PENDF AND CREATE A TAB1 FILE
	A-36. pickeze - MODULE TO PICK FUNCTIONS FROM A TAB1 FILE
	A-37. platinum - Pkeno Library Assembler Tool IN a Useable Module
	A-38. polident - MODULE TO PRODUCE POINT DATA FROM RESONANCE DATA
	A-39. prell - MODULE TO PRODUCE AND MANIPULATE AN ENERGY LIMITS LIBRARY
	A-40. prilosec - MODULE TO produce ORIGEN cross section libraries
	A-41. prude - AMPX MODULE TO CREATE CROSS SECTIONS FOR THE UNRESOLVED RESONANCE ENERGY REGION
	A-42. puff_iv - MODULE TO GENERATE MG CORRELATION MATRICES
	A-43. purm - module to produce probability tables from unresolved resonance data using monte carlo
	A-44. purm_up - Correct probability tables for File 3 contributions.
	A-45. rade - MODULE TO CHECK AMPX MASTER CROSS SECTION LIBRARIES
	A-46. simonize
	A-47. smiler - AMPX MODULE TO CONVERT NJOY GENDF Files TO AMPX MASTER LIBRARIES
	A-48. splicer - Sets the functions on a TAB1 file to zero between el and eh, or chop to the given range, or splice with data
	A-49. tabasco - MODULE TO READ FUNCTIONS FROM AN AMPX MASTER LIBRARY AND WRITE THEM TO A TAB1 FILE AS HISTOGRAMS
	A-50. tgel - MODULE TO CALCULATE TOTAL CROSS SECTIONS FOR FUNCTIONS WRITTEN IN TAB1 FORMAT
	A-51. tomato - MODULE TO CHANGE MATERIAL IDENTIFIERS (MAT NUMBERS) ON A TAB1 FILE
	A-52. worm - AMPX MODULE TO CONVERT AN AMPX WORKING LIBRARY TO AN AMPX MASTER LIBRARY
	A-53. x10 - MODULE TO PRODUCE MG LIBRARIES FROM THREE TABULAR FILES
	A-54. y12 - Create kinematic DATA files
	A-55. zest - MODULE TO MANAGE STRING LIBRARIES

