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 Main objectives
• The chain of uncertainty propagation from basic data, and engineering uncertainties, 

across different scales (multi-scale), and physics phenomena (multi-physics) to be 
tested on a number of benchmark exercises for which experimental data is available and 
for which the power plant details have been released

 The Reactor Dynamics and Fuel Modeling Group (RDFMG) at NCSU has been working on 
the following Uncertainty Analysis in Modeling (UAM) benchmarks

• NEA/OECD Light Water Reactor (LWR) UAM
• IAEA CRP High Temperature Gas-cooled Reactor (HTGR) UAM
• NEA/OECD Sodium-cooled Fast Reactor (LWR) UAM

 Various modules from different versions of SCALE package have been extensively utilized 
in support of benchmark specification and calculations

• Neutronics modeling 
• Sensitivity and uncertainty (S/U) analysis

Reactor Uncertainty Analysis in Modeling (UAM) benchmarks
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 Objective
• The work is intended to quantify the 

uncertainty from nuclear data in the 
simulation of TMI-1 test cases within the 
LWR-UAM benchmark framework.

 Exercises
• Phase I (Neutronics Phase)

• Exercise I-3: “Core Physics” focused on 
the core steady-state stand-alone 
neutronics calculations and their 
uncertainties.

• Phase III (System Phase)
• Exercise  III-1: “Coupled Core-System” -

Coupled neutronics kinetics thermal-
hydraulic core/thermal-hydraulic system 
performance. 

Uncertainty Analysis in LWR Modeling
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PWR numerical cases based on TMI-1 core design
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Parameter Value Bank No. rods Purpose
Number of fuel assemblies 177 1 8 Safety
Number of reflector assemblies 64 2 8 Safety
Fuel assembly pitch  (mm) 218.110 3 8 Safety
Gap between fuel assemblies (mm) 1.702 4 8 Safety
Active core length (mm) 3571.24 5 12 Regulating
Total core length (mm) 4007.42 6 8 Regulating

7 9 Regulating
8 8 APSR
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 Exercise I-3 
• Standalone neutronics simulation
• Fresh fuel
• Hot zero power (HZP) steady-state
• All rods inserted (ARI)

 1000 sets of perturbed cross section
• 56g-ENDF/B VII.1 library
• 56g-ENDF/B v7.1 covariance data library
• Source of uncertainty: cross sections

 14 unique lattice models
• 8 fuel lattices
• 3 BP-loaded lattices
• 3 reflector models

Generation of cross section sets for Exercise I-3
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 SCALE 6.2 Sampler/Polaris
• Sampler: General stochastic sampling method for uncertainty propagation
• Polaris: new LWR lattice physics transport code

 GenPMAXS: Conversion of format from txtfile16 to PMAXS
 PARCS: Nodal core simulator 

Stochastic sampling using Sampler/Polaris and PARCS
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 For all fuel assembly lattices, the uncertainty of kinf is ~0.55% or ~600 pcm for 
fresh fuel.

Exercise I-3: lattice calculation
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Lattice type kinf ± rel. σ
E4.00 1.12780 ± 0.55%
E4.40 1.15704 ± 0.54%
E4.85+4GD 1.15748 ± 0.54%
E4.95+BP 1.06570 ± 0.55%
E4.95+BP+4GD 1.03814 ± 0.56%
E4.95+4GD 1.16358 ± 0.53%
E4.95+8GD 1.13113 ± 0.54%
E5.00 1.19453 ± 0.53%
E5.00+BP+4GD 1.04129 ± 0.56%
E5.00+4GD 1.16657 ± 0.53%
E5.00+8GD 1.13422 ± 0.54%



 2-group cross sections generated for 1 nominal + 1000 samples
 Core condition: fresh, HZP, ARI
 Running mean and uncertainty do not change much when N > 400
 The standard deviation of k-eff with 1000 and 150 samples are both ~0.51%

Exercise I-3: running mean k-eff
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Nominal keff 1.00361

Sample mean keff ± rel. σ
(1000 samples) 1.00340 ± 0.51%

Sample mean keff ± rel. σ
(150 samples) 1.00374 ± 0.51%

Diff. from nominal keff 0.01%

Diff. from mean keff of 1000 
samples 0.03%



 But a larger sample size will yield narrower confident intervals*
 A sample size of 100 yields >10% relative confidence interval
 It is not acceptable if N = 100 is used to investigate some effect that has < 10% 

impact on sample standard deviation 

Confidence intervals for k-eff population standard deviation 
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𝑁𝑁 − 1
𝜒𝜒 ⁄𝛼𝛼 2,𝑁𝑁−1
2 − 100%

𝑁𝑁 − 1
𝜒𝜒 1− ⁄𝛼𝛼 2,𝑁𝑁−1
2 − 100%

Evolution of 95% relative confidence intervals with sample size

Sample size 
N lower limit upper limit

100 87.8% 116.2%

500 94.2% 106.6%

1000 95.8% 104.6%

Relative confidence interval for 
confidence level of 95%

How to choose sample size N?
• Depends on users’ need

• CL/confidence interval
• Convergence of std

• Depends on response of interest
• Is it possible to let Sampler

choose N?

* F. Bostelmann et al., "Some comments on the GRS MHTGR results of Phase I,", IAEA CRP on HTGR 
UAM: RCM-4, Vienna, May 22-25, 2017



Exercise I-3: axial power profile
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Slightly top half peaked

87% - node 9

13% - node 10

Axial peaking location

Nominal FZ: 1.487
Sampled FZ fixed location (node 9): 1.487 ± 0.14%
Sampled FZ location free: 1.487 ± 0.16%



Exercise I-3: radial power profile
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Fixed peaking location
Fuel enrichment 4.95%

Control rod locations

Radial peaking factor FR
Nominal: 1.683
Sampled: 1.683 ±0.55%

Large uncertainty due to:
low power,
normalization process



Ex III-1: core condition and exposure map available

 Currently only focusing on steady state neutronics calculation
 HFP condition

• Reactor power = 100% rated power (2771.9 MW);
• Average fuel temperature = 921 K, inlet moderator temperature = 562.67 K, outlet 

moderator temperature = 592.7 K; 
• Control rod groups 1–6 completely withdrawn, group 7 completely inserted and group 8 

(APSR) 53.8% inserted;
• Core inlet pressure = 15.36 MPa;
• Core flow rate = 16546.04 kg/s. 

EOC assembly burnup map

• HZP condition
• Fuel temperature = 551 K, moderator 

temperature = 551 K and moderator 
density = 766 kg/m3;

• Control rod groups 1–4 completely 
withdrawn, groups 5–7 completely inserted 
and group 8 (APSR) 70% inserted.
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 Same approach as in Ex I-3: Polaris/Sampler
 State variables: fuel temperature, coolant density, and control rod insertion.
 Boron concentration fixed at 1935 ppm and 5 ppm for BOC and EOC, respectively. 

Parameterized cross section generation: range of state variables
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State variables State points calculated

Fuel temperature (K) 551, 921, 1780, 2400, 3000

Boron Concentration (ppm) 5, 1935

Coolant density (g/cc) 0.660, 0.702, 0.733, 0.770

Control rod insertion Yes, no

APSR insertion Yes, no

For non-APSR assemblies: 
5×4×2=40 state points for both 
BOC and EOC state

Ref state CR 
branch

DC 
branch

TF 
branch

PC = 1935 ppm

PC = 5 ppm

For APSR lattice: 5×4×4=80 state points for 
both BOC and EOC state, respectively.



 The 150 core keff’s could be regarded as normally distributed. 
 The uncertainties for keff is 0.44-0.47%. 
 They are smaller than the uncertainty of Exercise I-3 fresh core keff (0.51%), because there 

are more heavy mental in fresh core and only the perturbation in cross section is taken into 
account at this stage. 

 For N = 150, rel. confidence interval for CL of 95% is [-10.18%, 12.80%]

Exercise III-1: keff , uncertainties, and normality tests
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State Nominal keff Sample mean keff ± rel. σ Anderson-Darling 
normality test

BOC HZP 1.01979 1.01986 ± 0.44% Pass

EOC HZP 1.04263 1.04276 ± 0.45% Pass

BOC HFP 1.01125 1.01136 ± 0.46% Pass

EOC HFP 1.02885 1.02902 ± 0.47% Pass



Exercise III-1: axial power profile at HFP state

18

HFP BOC
Nominal Fz: 1.406
150 sample mean Fz location free:               1.408±0.33%
150 sample mean Fz location fix (node 8): 1.406±0.23%

HFP EOC
Nominal Fz: 1.242
150 sample mean Fz location free:               1.243±0.75%
150 sample mean Fz location fix (node 7):   1.242±0.77%

Axial powers peak in bottom half core:
Smaller moderator temperature 
 larger moderator density. 

Axial power profile is flattened towards EOC. 

57% - node 8
43% - node 9

54% - node 7
33% - node 6

13% - node 8



Exercise III-1: radial power distribution at HFP
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Uncertainty smaller at EOC due to flattened flux distribution

HFP EOC HFP BOC

51% L9
peaking location

49% M10 100% L9
peaking location



Exercise III-1: radial power distribution at BOC
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HZP BOC HFP BOC

Control rod bank 6Control rod bank 5



Summary on LWR UAM activities

 Cross section sets prepared for TMI-1 case in NEMTAB and PMAX format using 
Polaris/Sampler in SCALE 6.2.1
 Preliminary results obtained for TMI-1 steady-state simulations using statistical 

sampling method
• Core keff, axial power peaking factor and radial power peaking factor are 

analyzed with associated uncertainties
• Anderson-Darling normality test performed

23

 Ongoing work
• It was reported that pin-by-pin calculation 

yields a non-normal power peaking factors. 
In contrast, the nodal solution of the power 
peaking factors are normally distributed. 

• Continue with depletion and transient 
(REA) simulations

Capability needed
• Shape function 

generated by 
Polaris

• Now available in
NEWT output
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IAEA CRP on HTGR UAM:
PBR-250

Lidong Wang, Fu Li
Institute of Nuclear and New Energy Technology (INET)
Tsinghua University, China

Jason Hou, Kostadin Ivanov
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 Core configurations
• Prismatic
• Pebble bed: representative 250 MWth Pebble Bed 

Reactor design (PBR-250)
 Objectives (following ideas of NEA/OECD UAM on LWRs)

• To subdivide system into steps
• To identify inputs, outputs and propagated uncertainties 

for each step
• To calculate resulting uncertainty in each step
• To propagate the results in integral system

 Peculiarities of HTGR
• Fuel design - TRISO
• Large graphite quantity
• High temperature

 In the current study, focuses have been placed on
• Exercise I-1 and I-2
• HTGR modeling options
• Nuclear data uncertainty

High Temperature Gas-cooled Reactor (HTGR) Uncertainty Analysis 
in Modeling (UAM) was initiated in 2012
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 SCALE versions
• 6.1, 6.2, 6.2.2

 SCALE modules
• KENO-VI, TSUNAMI-3D

 SCALE libraries
• Nuclear data libraries: ENDF/B VII.0, ENDF/B VII.1
• Covariance libraries: 44groupcov, 56groupcov7.1

SCALE modules used in this study
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 Exercise I-1
• single pebble or “cell” calculation

 Model parameters
• 7g heavy metal per pebble
• White/reflective boundary

 Exercise I-2
• core unit or “assembly” calculation

 Packing structure
• BCC  /  HCP  /  “Dummy” Pebble

Benchmark Phase I: local standalone neutronics simulation
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Exercise Sub-cases State Enrichment Geometry

Exercise I-1

a: Fresh fuel CZP
(cold zero power, 293K) 8.9% (4.2%*)

b: Batch 113 burned 
fuel†

HFP
(hot full power, 900K) --

Exercise Central Case neighbors State Geometry

Exercise I-2 Batch 113

a: Batch 113
b: Batch 225
c: Fresh fuel
d: Graphite

CZP

HFP

* 4.2% is the fuel enrichment usually used in HTGR criticality in fresh core
† Burn-up of this representative fuel sphere is ~63,000 MWd/T



 Modeling approaches (Ex I-1a only)
• Various levels of geometry simplification
• Effect on multiplication factor

 Effect of ND library (Ex I-1a, CZP & HFP state)
 Uncertainty quantification

 Modeling with KENO-VI
• Explicit model of coated particles (lattice)
• Homogenized fuel region with 
• DOUBLEHET unit cell
• Homogenized fuel region with RPT

 Modeling with Serpent-2
• Randomly distributed particles
• Code-to-code verification

Exercise I-1: single pebble

28

lattice

homogenized
RPT*

random
(Serpent-2)

homogenized
DOUBLEHET



 Ex I-1a, ENDF/B VII.1

Effect of modeling approaches on multiplication factors
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Case
CZP (293K) HFP (900K)

keff±σ Δ[pcm] keff±σ Δ[pcm]

KENO-VI CE Lattice 1.57841±0.00019 reference 1.50277±0.00014 reference

Serpent-2 Lattice 1.57883±0.00010 42 1.50298±0.00010 21

Serpent-2 Random 1.57656±0.00010 -185 1.50071±0.00010 -206

KENO-VI MG DH 1.57535±0.00015 -306 1.49904±0.00014 -373

Serpent-2 HM 1.46188±0.00008 -11,653 1.37548±0.00010 -12,729
KENO-VI CE HM 1.46131±0.00014 -57 1.37559±0.00015 11

KENO-VI MG HM 1.45914±0.00021 -274 1.37378±0.00025 -170

• CE Monte Carlo methods produce consistent results using lattice model: Δk < 50 pcm
• Results associated with random distribution of particles are in between those of lattice 

and DH models
• CE Lattice model vs. MG DOUBLEHET model: -306 & -373 pcm

With double 
heterogeneity 
treatment

Approximate 
homogenization



 Multiplication factor

Effect of nuclear data libraries (Ex I-1a, 8.9% enrichment)
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Case
CZP(293K) HFP(900K)

ENDF/B VII.0 ENDF/B VII.1 Δ[pcm] ENDF/B VII.0 ENDF/B VII.1 Δ[pcm]

KENO-VI CE Lattice 1.58613±0.00019 1.57841±0.00019 772 1.50948±0.00013 1.50277±0.00014 671

Serpent-2 Lattice 1.58580±0.00010 1.57883±0.00010 697 1.50932±0.00010 1.50298±0.00010 634

Serpent-2 Random 1.58379±0.00010 1.57656±0.00010 723 1.50717±0.00010 1.50071±0.00010 646

KENO-VI MG DH 1.58309±0.00016 1.57535±0.00015 774 1.50694±0.00013 1.49904±0.00014 790

Serpent-2 HM 1.46737±0.00008 1.46188±0.00008 549 1.38110±0.00010 1.37548±0.00010 562

KENO-VI CE HM 1.46763±0.00015 1.46131±0.00014 632 1.38176±0.00016 1.37559±0.00015 617

KENO-VI MG HM 1.46589±0.00021 1.45914±0.00021 675 1.37954±0.00020 1.37378±0.00025 576

• 500-800 pcm difference was found when comparing the results of ENDF/B VII.0 and ENDF/B VII.1 for all 
models at both CZP and HFP states.



 Relatively large difference between ENDF/B-VII.0 and -VII.1
 Effect on criticality calculation

for a coated particle ~200 pcm
for a single pebble ~700 pcm
for a core unit ~1100 pcm

Nuclear data difference: carbon (n,gamma) reaction
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 Various options in TSUNAMI-3D were tested
• MG: the doubly heterogeneous effect cannot be ignored
• CE-IFP*: huge memory footprint
• CE-CLUTCH†: mesh grid with enough neutron histories is required

• Convergence of importance function F*(r) should be guaranteed
• Choice of mesh size and neutron history in each mesh is important but

heavily relies on user’s experience 
• Sensitivity coefficients obtained from TSUNAMI-3D should always be 

verified with direct perturbation method (DPM) results. 
 Calculations performed for the following

• MG/CE TSUNAMI-3D (Ex I-1a)
• CE TSUNAMI-3D (Ex I-1b)
• Parametric study for CE-CLUTCH
• Influence of temperature
• Influence of covariance libraries

Uncertainty quantification (UQ) following sensitivity based approach
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* Iterated Fission Probability
† Contribution-linked Eigenvalue Sensitivity/Uncertainty Estimation via Tracklength Importance Characterization



 Related issues
• COV-Lib couldn’t be switched to 44groupcov in CE TSUNAMI-3D sequence –

resolved in SCALE 6.2.2
• MG mode with Doublehet option succeed, which was unexpected

 Ex I-1a (fresh fuel) CZP state results

MG/CE TSUNAMI-3D calculations (SCALE6.2, Ex I-1a)
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TSUNAMI ND_Lib COV_Lib keff Uncertainty (%k/k)

MG
ENDF/B 

VII.0

44groupcov 1.58309±0.00016 0.455390±0.000040
56groupcov7.1 1.58309±0.00016 0.497242±0.000016

CE-IFP 56groupcov7.1 1.58553±0.00039 0.500800±0.000430
CE-CLUTCH 56groupcov7.1 1.58580±0.00022 0.500440±0.000380

MG
ENDF/B 

VII.1

44groupcov 1.57586±0.00015 0.454402±0.000040
56groupcov7.1 1.57586±0.00015 0.493352±0.000020

CE-IFP 56groupcov7.1 1.57970±0.00040 0.503500±0.000480
CE-CLUTCH 56groupcov7.1 1.57975±0.00014 0.502950±0.000250

Should always use consistent ND and COV libraries: 
ENDF/B-VII.0+44groupconv; ENDF/B-VII.0+56groupconv7.1

MG TSUNAMI-3D UQ results 
are smaller than CE TSUNAMI-
3D UQ results, as the implicit 
effect is ignored.



 IFP CE TSUNAMI-3D
• ~40G memory for CFP (number of 

latent generation) = 1
• CFP usually is 5-10
• Compared with ~9G for fresh fuel (4 

isotopes)
• Not applicable to larger geometry

 CLUTCH CE TSUNAMI-3D

Ex I-1b: Batch-113 burned Fuel (CZP state)
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CFP

IFP Scheme

TSUNAMI Lib Temp Uncertainty (%k/k)

IFP

ENDF/B 
VII.1 

56groupcov

293
0.52038±0.00043

CLUTCH 0.51575±0.00039

IFP
900

0.51256±0.00044

CLUTCH 0.51834±0.00029



 IFP results were collected in test calculations that didn’t follow recommended 
setup 

Influence of temperature on uncertainties

35

Exercise TSUNAMI Lib Temp k-eff Uncertainty (%k/k)

Ex I-1a
IFP

ENDF/B VII.1

56groupcov

293K 1.57965±0.00029 0.50130±0.00032

900K 1.50402±0.00030 0.51565±0.00038

CLUTCH
293K 1.57975±0.00014 0.50295±0.00025

900K 1.50337±0.00014 0.51834±0.00029

Ex I-1b
IFP

293K 1.09173±0.00015 0.51575±0.00039

900K 1.05889±0.00043 0.51472±0.00064

CLUTCH
293K 1.09193±0.00020 0.52038±0.00043

900K 1.05908±0.00016 0.51258±0.00044

Sensitivity analysis is required to understand the decrease of rel. uncertainty with temperature for burned fuel.



 CE TSUNAMI-3D IFP requires large memory
 Only CE TSUNAMI-3D CLUTCH results are available

Influence of libraries / covariance (CLUTCH)

Exercise Mat. Temp. (K) Lib / Cov keff Uncertainty (%k/k)

Ex I-1a

8.9%
293

7.1 / 56 1.57975±0.00014 0.50295±0.00025
7.0 / 44 1.58689±0.00013 0.45096±0.00031

900
7.1 / 56 1.50337±0.00014 0.51834±0.00029
7.0 / 44 1.50980±0.00015 0.47267±0.00038

4.2%
293

7.1 / 56 1.42819±0.00012 0.55577±0.00033
7.0 / 44 1.43954±0.00014 0.51578±0.00047

900
7.1 / 56 1.34920±0.00014 0.57858±0.00039
7.0 / 44 1.36010±0.00013 0.52876±0.00054

Ex I-1b Batch 113
293

7.1 / 56 1.09193±0.00020 0.52038±0.00043
7.0 / 44 1.09700±0.00016 0.55383±0.00050

900
7.1 / 56 1.05908±0.00016 0.51258±0.00044
7.0 / 44 1.06354±0.00015 0.60715±0.00046
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• Impact of nuclear data library
• Spectral effect
• Impact of composition



 Impact of fuel enrichment
 Results obtained for ENDF/B-VII.1 + 56g cov
 Spectral shift affects contribution to k-eff uncertainty

Top 7 Contributors to keff Uncertainty
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No.
8.9%wt 4.2%wt

Matrix Contribution Matrix Contribution

1 U-235 𝜈̅𝜈 3.7866E-01 U-235 𝜈̅𝜈 3.8136E-01

2 U-235 (𝑛𝑛, 𝛾𝛾) 2.0919E-01 U-238 (𝑛𝑛, 𝛾𝛾) 2.2987E-01

3 U-238 (𝑛𝑛, 𝛾𝛾) 1.6196E-01 U-235 (𝑛𝑛, 𝛾𝛾) 1.9664E-01

4 U-235 𝑛𝑛, 𝑓𝑓 (𝑛𝑛, 𝛾𝛾) 1.0949E-01 Graphite (𝑛𝑛, 𝛾𝛾) 1.7274E-01

5 Graphite (𝑛𝑛, 𝛾𝛾) 9.0193E-02 U-235 𝑛𝑛, 𝑓𝑓 (𝑛𝑛, 𝛾𝛾) 1.2147E-01
6 Grphite (𝑛𝑛,𝑛𝑛) 8.2684E-02 U-235 (𝑛𝑛,𝑓𝑓) 9.3696E-02

7 U-235 (𝑛𝑛,𝑓𝑓) 7.1330E-02 Grphite (𝑛𝑛,𝑛𝑛) 7.6731E-02



 Packing study: BCC, HCP, “Dummy” Pebble
 BCC sub-cases

• Central fuel sphere: Batch 113 
• Neighbors

• a-Batch 113; b-Batch 225; c-Fresh fuel d-Graphite
• CZP-293k; HFP-900K

 Three geometries with same pack fraction (61%)
• BCC structure

• Cubic boundary, reflective/periodic BC
• 2 pebbles in total

• HCP structure
• Hexagonal prismatic boundary, periodic BC
• 13 spheres in total

• Dummy pebble
• Outer radius is enlarged (3 cm to 3.013 cm)
• But enclosed by the cubic boundary
• to satisfy 61% packing fraction

Exercise I-2: core unit or “assembly” calculation
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BCC

HCP

Dummy pebble



 Multiplication factor ENDF/B VII.1, CZP, all 4.2% enrichment
• Impact of geometry is negligible as long as the pack fraction is maintained

 UQ using TSUNAMI-3D CLUTCH for BCC sub-cases
• Central pebble is batch 113 burned fuel sphere

Criticality calculation and UQ results

Model BCC HCP Dummy pebble

KENO-VI CE Lattice 1.42787±0.00014 1.42811±0.00015 1.42835±0.00014

Serpent-2 Lattice 1.42789±0.00008 1.42810±0.00008 1.42817±0.00008

Serpent-2 Random 1.42639±0.00008 1.42641±0.00008 1.42681±0.00008

KENO-VI MG DH 1.42547±0.00011 1.42540±0.00012 1.42560±0.00011
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Sub-cases
CZP HFP

keff Uncertainty % keff Uncertainty %

a: batch 113 1.09163±0.00015 0.48780±0.00032 1.05913±0.00014 0.50412±0.00041

b: batch 225 0.99503±0.00016 0.54570±0.00050 0.98523±0.00014 0.54084±0.00045

c: fresh fuel 1.35637±0.00017 0.48444±0.00027 1.28407±0.00014 0.48116±0.00032

d: graphite 1.16663±0.00015 0.54910±0.00035 1.16906±0.00015 0.51635±0.00042

Absolute uncertainties 
are similar

Absolute uncertainties 
larger due to graphite 
contribution



 Exercise I-1 single pebble
• Study on modeling approaches (only for Ex I-1a)

• Various levels of geometry simplification
• Effect on multiplication factor (CZP & HFP state)

• Effect of ND and COV library (CZP & HFP state)
• Uncertainty quantification

 Exercise I-2 core unit
• Packing study
• Uncertainty quantification

 Ongoing work
• PBR-250 whole-core model
• UQ using CE TSUNAMI-3D CLUTCH
• Not possible without MPI support

Summary on HTGR CRP activities
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Detailed instruction
for compiling SCALE 
with MPI support is 
needed

Parallel SCALE (with MPI support)
cp script/configure_scale_mpi.sh build/gcc
chmod u+x build/gcc/configure_scale_mpi.sh
./configure_scale_mpi.sh ../..



 NCSU is performing studies on a number of Uncertainty Analysis in Modeling (UAM) 
benchmarks

• NEA/OECD Light Water Reactor (LWR) UAM
• IAEA CRP High Temperature Gas-cooled Reactor (HTGR) UAM
• NEA/OECD Sodium-cooled Fast Reactor (LWR) UAM

 SCALE package is one of the major computational tools adapted for the benchmark 
specification and calculations

• Neutronics modeling 
• Sensitivity and uncertainty (S/U) analysis
• SCALE 6.2/6.2.1/6.2.2
• TSUNAMI, Polaris, Sampler, KENO, etc.

Summary
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