

The AMPX/SCALE Capability with the AMPX 1597-g Library for Advanced Reactor Analysis

2018 SCALE Users' Group Workshop

K. S. Kim, M. L. Williams, A. Holcomb, D. Wiarda (ORNL)

B. K. Jeon, W. S. Yang (U. of Michigan)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Backgrounds and Objective

AMPX code package

- Cross section processing for multigroup (MG) and continuous energy (CE)
- AMPX MG and CE libraries for the SCALE code package
- Developed by Oak Ridge National Laboratory
- Similar to NJOY at LANL

SCALE code package

- Compute problem-dependent MG cross sections
- Both deterministic and Monte Carlo
- Resonance self-shielding for deterministic:
 - Pointwise slowing down (CENTRM) & Bondarenko (ESSM) approaches

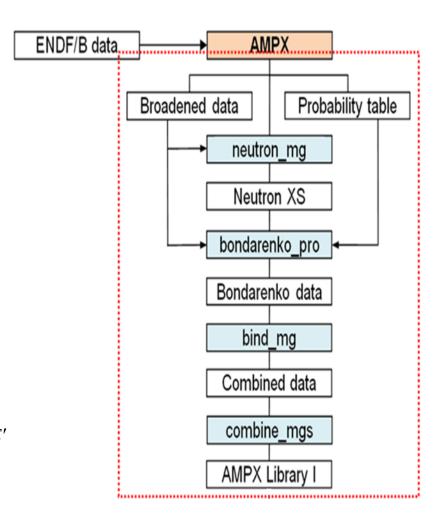
Application of the SCALE deterministic MG procedure

- Light water reactor: PWR, BWR
- High temperature gas cooled rector
- Fast spectrum systems

Limitations and objective

- Large reactivity bias for fast spectrum systems due to coarse energy group structure and poor unresolved resonance treatment
- Resolve the reactivity bias issue

AMPX Library Generation Procedure


- Pointwise XS data generation
 - Doppler broadening
 - Probability table
- Multigroup XS generation
 - Flux weighting options
 - Maxwellian+1/E+Fission spectrum
 - Pointwise PWR spectra
 - Self-shielded resonance data
 - Narrow resonance approximation

$$\sigma_{i,g}(T,\sigma_0) = \frac{\int\limits_{g} \frac{\sigma_i(T,E)\sigma_0}{\sigma_t(T,E) + \sigma_0} dE}{\int\limits_{g} \frac{\sigma_0}{\sigma_t(T,E) + \sigma_0} dE}$$

- Scattering matrix

$$\sigma_{s,l,gg'} = \frac{1}{\int_{g} \phi(E) dE} \int_{g} y(E) \sigma_{s}(E) \phi(E) dE \int_{g'} f_{l}(E,E') dE'$$

- AMPX MG libraries
 - 252-group (default), 56-group (coarse) structure

Unresolved Resonance Treatment - AMPX

- Probability Table Method with NR Approximation
 - Continuous energy

$$\sigma_{x,g,i} = \frac{\int_{g} \sum_{m} p_{i}^{m} \sigma_{x,i}^{m}(E) \phi^{m}(E) dE}{\int_{g} \sum_{m} p_{i}^{m} \phi^{m}(E) dE} \qquad \phi^{m}(E) = \frac{W(E)}{N_{i} \sigma_{t,i}^{m}(E) + \sum_{j \neq i} N_{j} \sigma_{t,j}(E) + \sum_{e} (E)}$$

$$\sigma_{x}^{m} = \text{a cross section level } m \text{ of reaction } x \text{ in the URR probability table,}$$

$$p^{m} = \text{a probability of the level } m,$$

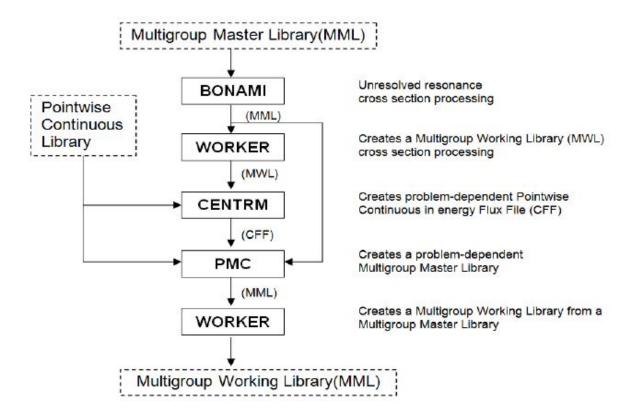
$$\sigma_{x,g} = \text{a self-shielded cross section of reaction } x, \text{ and}$$

$$\phi^{m}(E) = \text{scalar flux at the level } m.$$

- MG self-shielded resonance data & calculation
 - Compute pre-calculated resonance table using arbitrary background XSs (σ_0)

$$\sigma_{x,g,i} = rac{\displaystyle \sum_{m} rac{p_{i}^{m} \sigma_{x,i,g}^{m}}{\sigma_{t,i,g}^{m} + \sigma_{0,i,g}}}{\displaystyle \sum_{m} rac{p_{i}^{m}}{\sigma_{t,i,g}^{m} + \sigma_{0,i,g}}}$$

- Problem-dependent background XS (σ_0) can be determined by the following equation where Σ_e can be obtained by Dancoff factor.


$$\sigma_{0,i,g} = \frac{1}{N_i} \left(\sum_{j \neq i} N_j \sigma_{t,j,g} + \Sigma_{e,g} \right)$$

SCALE MG Procedure

Cross section processing procedure

- BONAMI: resonance self-shielding based on Bondarenko approach
- CENTRM: pointwise slowing down calculation for thermal + resolved energy groups
- PMC: obtain multigroup cross sections and scattering matrices
- Deliver XS to the transport codes XSDRN, NEWT & KENO

Ultra-Fine Group Structure

- An AMPX 1597-group test library was generated for this study using the AMPX/SCALE code packages and the ENDF/B-VII.1 data
 - 0.1 keV ~ 20 MeV: 1323 groups based on MC²-3 of ANL
 - To represent broad resonances of intermediate weight nuclides explicitly
 - < 0.1 keV: 274 groups based on the AMPX 252-group structure
- To verify the probability table generated by the AMPX code package and the AMPX/SCALE MG cross section processing procedure, an intensive reaction rate analysis was performed for various fast reactor problems

Reaction Rate Analysis

Reaction rate analysis procedure

- SCALE-MG vs. CE KENO
 - Edit MG microscopic cross sections & scalar fluxes
- Convert reaction rate difference into reactivity difference
 - Reactivity differences for each energy group, nuclide and reaction type
 - Identify the reactions causing the observed reactivity difference
 - Two options: [1] Only by cross section difference
 [2] By both cross section and flux differences

$$\Delta \rho_{a,g,J}^{K} = \left(\frac{1}{k_{eff}^{KENO}} - \frac{\sum_{j} \sum_{i} \sum_{g'} N_{i,j} \sigma_{a,g',i,j}^{KENO} \varphi_{g',j}^{KENO} V_{j} - N_{K,J} (\sigma_{a,g,K,J}^{KENO} - \sigma_{a,g,K,J}^{MG}) \hat{\varphi}_{g,J} V_{J}}{\sum_{j} \sum_{i} \sum_{g'} N_{i,j} \nu \sigma_{f,g',i,j}^{KENO} \varphi_{g',j}^{KENO} V_{j}}\right) \cdot 10^{5}$$

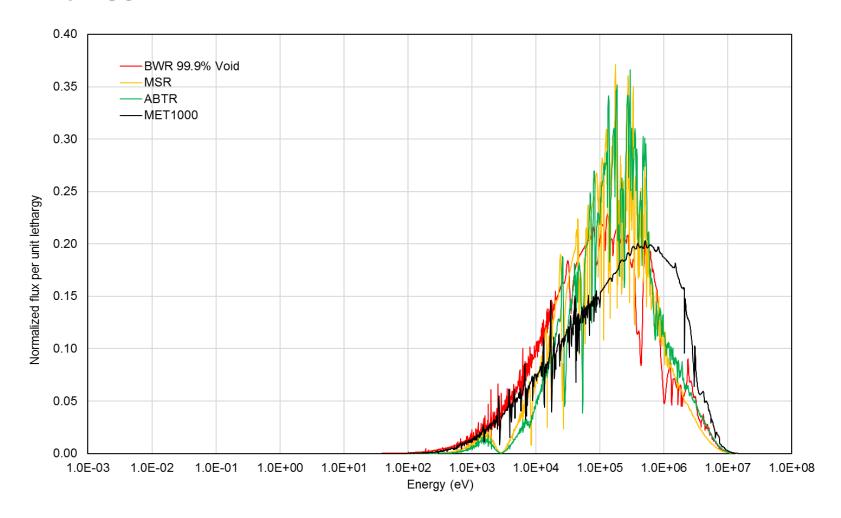
$$\Delta \rho_{vf,g,J}^{K} = \left(\frac{1}{k_{eff}^{KENO}} - \frac{\sum_{j} \sum_{i} \sum_{g'} N_{i,j} \sigma_{a,g',i,j}^{KENO} \varphi_{g',j}^{KENO} V_{j}}{\sum_{j} \sum_{i} \sum_{g'} N_{i,j} v \sigma_{f,g',i,j}^{KENO} \varphi_{g',j}^{KENO} V_{j} - N_{K,J} (v \sigma_{f,g,K,J}^{KENO} - v \sigma_{f,g,K,J}^{MG}) \hat{\varphi}_{g,J} V_{J}}\right) \cdot 10^{5}$$

$$\Delta \rho_{g} = \sum_{i} \sum_{K} \sum_{g} (\Delta \rho_{a,g,j}^{K} + \Delta \rho_{vf,g,j}^{K})$$

Benchmark Problems

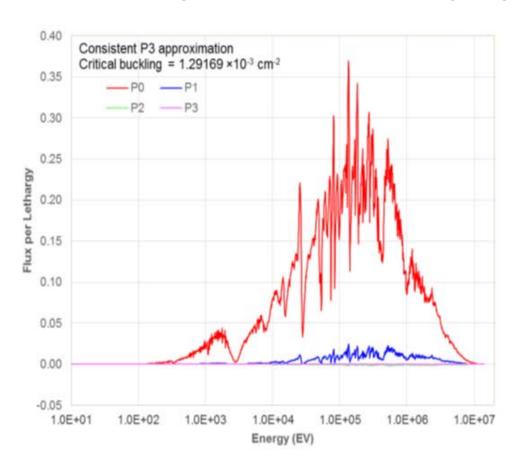
• BWR, MSR, ABTR, MET1000, SNU

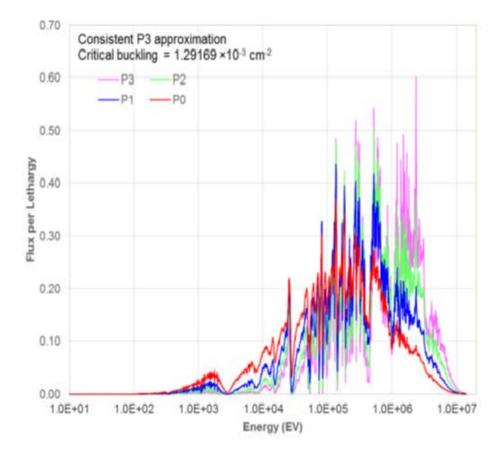
Fuel type	Material	Radius	Atomic number density					
BWR	Fuel	0.60579	²³⁵ U 7.18132E-04 ¹⁶ O 4.57642E-02 ²³⁸ U 2.21546E-02					
	Clad	0.62103	²⁷ Al 6.02611E-02					
	Mod.	1.87452	¹ H 6.72142E-02 ¹⁶ O 3.36071E-02	*				
			¹ H 4.41459E-02 ¹⁶ O 2.20729E-02	0.0				
			¹ H 1.32438E-02 ¹⁶ O 6.62187E-03	70.0				
			¹ H 4.41459E-03 ¹⁶ O 2.20729E-03	90.0				
			¹ H 4.41459E-04 ¹⁶ O 2.20729E-04	99.0				
			¹ H 4.41459E-05 ¹⁶ O 2.20729E-05	99.9				
	Fuel	-	²³⁵ U 3.10000E-05 ²³⁸ U 4.27500E-03 ²³⁹ Pu 4.04000E-04					
MSR			²⁴⁰ Pu 5.40000E-05 ²⁴¹ Pu 2.70000E-05 ²⁴² Pu 5.40000E-05					
			²³ Na 5.38300E-03 ³⁵ Cl 1.50100E-02 ³⁷ Cl 4.83320E-03					
	Fuel	0.35010	²³⁵ U 3.22479E-05 ²³⁸ U 2.02220E-02 ²³⁹ Pu 3.49907E-03					
			²⁴⁰ Pu 3.73979E-04 ⁹⁰ Zr 3.75264E-03					
ABTR	Inner	0.48750	²³ Na 2.22720E-02					
	Clad	0.50900	⁵⁴ Fe 4.08237E-03 ⁵⁶ Fe 6.40845E-02					
	Outer	1.04500	²³ Na 2.22720E-02					
	Fuel	-	natC 1.00000E-02 ⁶² Ni 4.01013E-06 ⁹⁰ Zr 1.46077E-03					
MET1000			⁹¹ Zr 3.18559E-04 ⁹² Zr 4.86924E-04 ⁹⁴ Zr 4.93454E-04					
METIOO			²³⁹ Pu 8.48385E-04 ²⁴⁰ Pu 5.03166E-04 ²⁴¹ Pu 7.22184E-05					
			²⁴² Pu 1.12387E-04					
SNU	Fuel	-	^{nat} C 1.00000E-02 ²³⁹ Pu 1.00000E-03					
	Fuel	-	²³ Na 7.14528E-03 ⁵⁶ Fe 1.34500E-02 ²³⁹ Pu 1.56532E-03					
	Fuel	-	²³ Na 7.14528E-03 ⁵⁶ Fe 1.34500E-02 ²³⁵ U 1.44262E-05					
			²³⁸ U 9.04638E-03 ²³⁹ Pu 1.56532E-03					


^{*}Moderator temperature: 293.6 K

Benchmark Problems

Comparisons of the Neutron Spectra

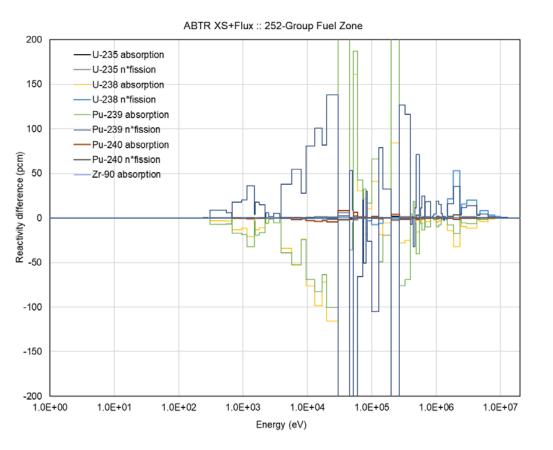

• From SCALE

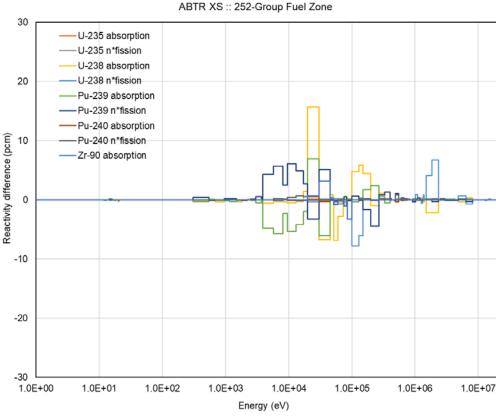


Anisotropic Effect

Comparisons of high order flux moments

- Thermal vs. Fast
- Require high order transport calculation
- Require high order flux moment weighting for group collapsing

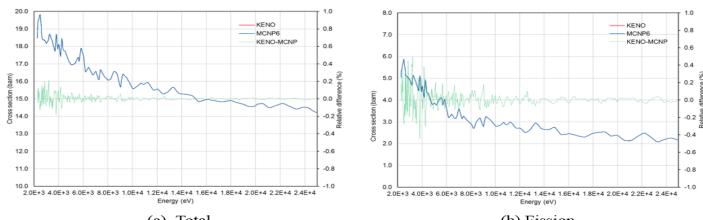




Limitation of the AMPX 252-Group Library

Reaction rate analysis for ABTR

- Self-shielded cross sections seems to be fine
- Reaction rates are very bad. Scalar fluxes are bad.
- Bad scattering matrices :: no high order flux moment weighting, resonances due to structure nuclides



Verification of the AMPX Probability Table

- Comparisons of the MG Tallied URR XSs: CE-KENO vs. MCNP
 - A normalization issue in the AMPX Probability Table was identified and fixed

Comparison of the URR MG Cross Sections between KENO and MCNP for ²³⁹Pu.

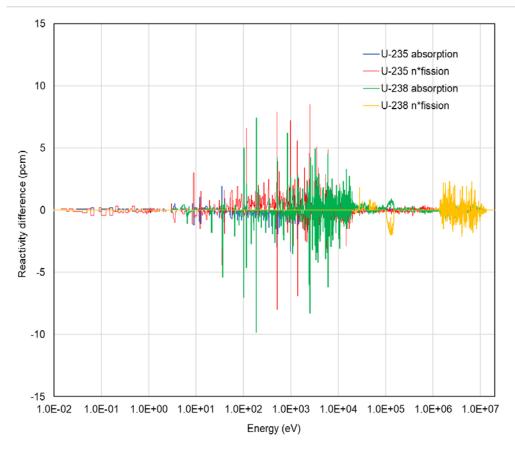
(a) Total (b) Fission Comparison of the URR MG Cross Sections between KENO and MCNP for ²³⁵U.

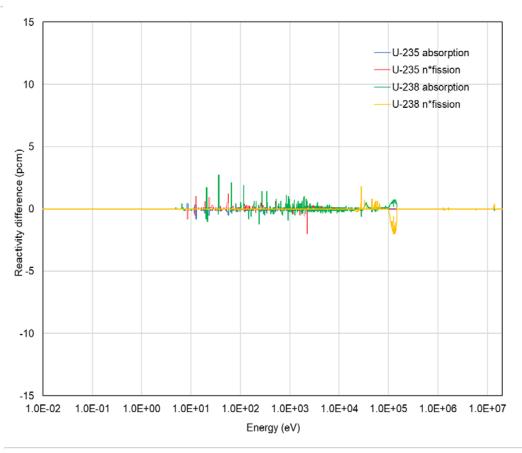
Benchmark Results Using the AMPX 1597-g Library

Comparisons of the Multiplication Factors

- CE-KENO, MCNP, SERPENT, and MG-KENO
- CE-KENO with old and new probability tables

Туре	Temp. (K)		Void (%)	CE KENO	Δk_{eff} (pcm)					
	Mod.	Fuel	V Old (76)	CE KENO	Old-KENO	MCNP	SERPENT	MG-KENO		
		600	90.0	0.92499	7	40	11	99		
	600		99.0	0.75990	25	-20	-18	-6		
			99.9	0.72988	31	-13	-1	-1		
BWR	600	900	90.0	0.90996	25	24	22	132		
			99.0	0.74916	15	-39	-40	-14		
			99.9	0.72207	25	-27	-20	-9		
	600	1200	90.0	0.89815	20	-16	-27	129		
			99.0	0.74185	24	-38	-33	-2		
			99.9	0.71692	15	-21	-13	-4		
MSR	-	293.6	-	1.13987	-697	62	62	36		
		600.0	-	1.13228	-669	83	77	66		
MSK		900.0	-	1.12835	-651	78	81	89		
		1200.0	-	1.12562	-662	66	77	79		
	293.6	293.6	-	1.60101	-489	-46	-60	39		
ADTD	600.0	600.0	-	1.59471	-480	-69	-68	39		
ABTR	600.0	900.0	-	1.59166	-494	-71	-70	59		
	600.0	1200.0	-	1.58964	-461	-85	-96	56		
MET1000	-	293.6	-	2.22285	-782	-104	-99	74		
		600.0	-	2.21827	-812	-119	-123	21		
		900.0	-	2.21620	-805	-105	-110	9		
		1200.0	-	2.214994	-786	-99	-98	6		


^{*} standard deviation for Monte Carlo: <10 pcm

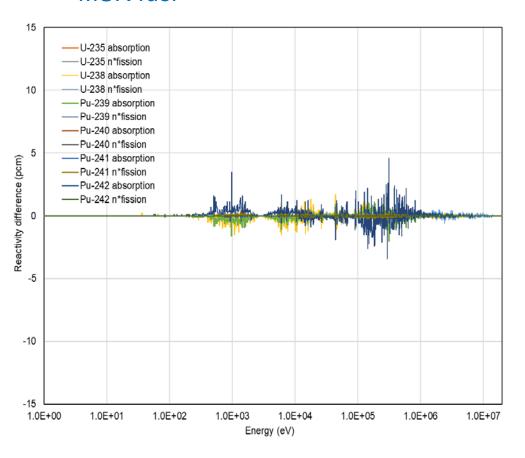


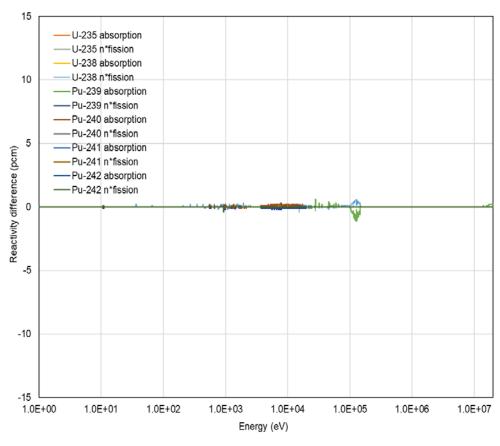
Reaction Rate Analysis: BWR

Comparisons of the Reaction Rates

- CE-KENO vs. MG-KENO 1597-g
- BWR fuel with 99.0% void

Reaction rate differences


Cross section differences

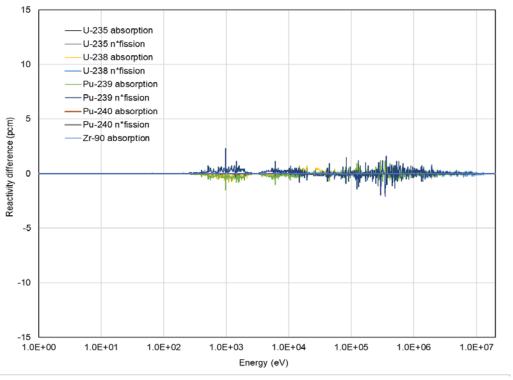


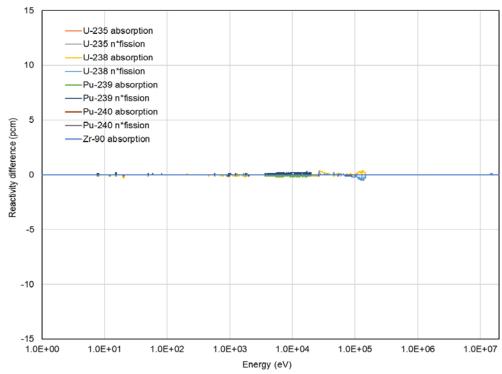
Reaction Rate Analysis: MSR

Comparisons of the Reaction Rates

- CE-KENO vs. MG-KENO 1597-g
- MSR fuel

Reaction rate differences


Cross section differences

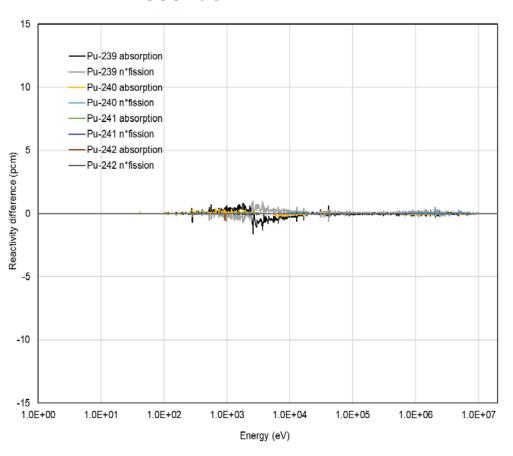


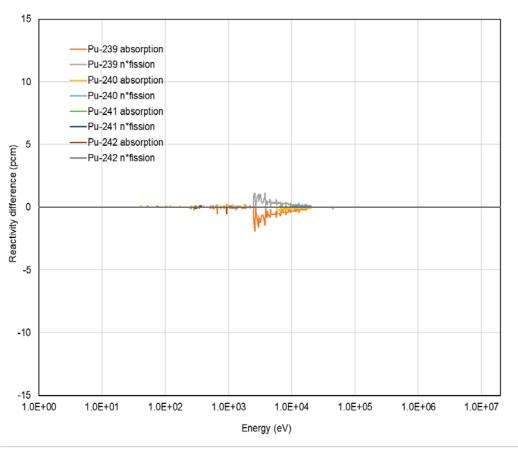
Reaction Rate Analysis: ABTR

- Comparisons of the Reaction Rates
 - CE-KENO vs. MG-KENO 1597-g

Case	Group	²³⁵ U		$^{238}{ m U}$		²³⁹ Pu		²⁴⁰ Pu		⁹⁰ Zr	Cross
		Ra	R_{nf}	Ra	Ra	Ra	R_{nf}	Ra	Rnf	Ra	Sum
Reaction rate	Fast	0	0	-5	5	-7	13	-1	1	0	6
	URR	0	0	21	-13	-18	10	0	2	-5	-3
	RR	0	0	-21	0	-35	35	-1	0	0	-22
	Thermal	0	0	0	0	0	0	0	0	0	0
	Sum	0	0	-5	-8	-60	58	-2	3	-5	-19
Cross section	Fast	0	0	0	0	0	0	0	0	3	0
	URR	0	0	15	-13	-26	27	-1	2	-5	-1
	RR	0	0	-2	0	-2	2	0	0	0	-2
	Thermal	0	0	0	0	0	0	0	0	0	0
	Sum	0	0	13	-13	28	29	-1	2	-5	-2

Reaction rate differences


Cross section differences



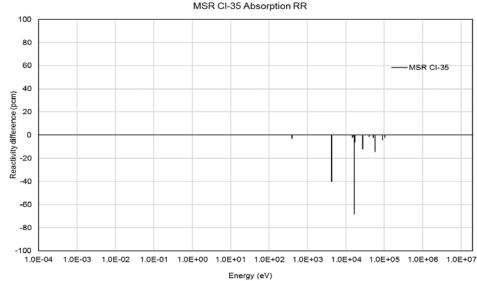
Reaction Rate Analysis: MET-1000

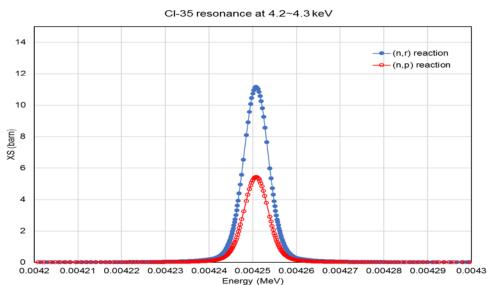
Comparisons of the Reaction Rates

- CE-KENO vs. MG-KENO 1597-g
- MET-1000 fuel

Reaction rate differences

Cross section differences

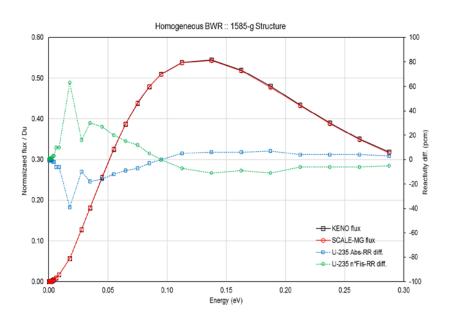

Issue: MSR CI-35

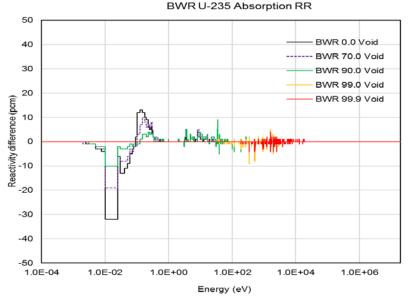

Reaction Rate Analysis

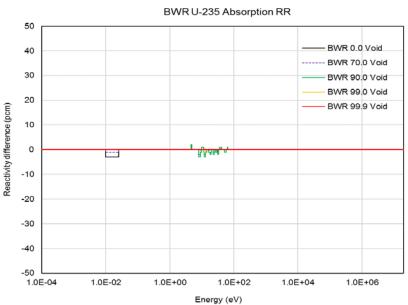
- ³⁵Cl introduces > 100 pcm
- ³⁵Cl includes (n,p) resonances

AMPX/SCALE

- Includes resonance data for ³⁵Cl (n,p) reaction in the AMPX MG library
- The issue has been fixed.

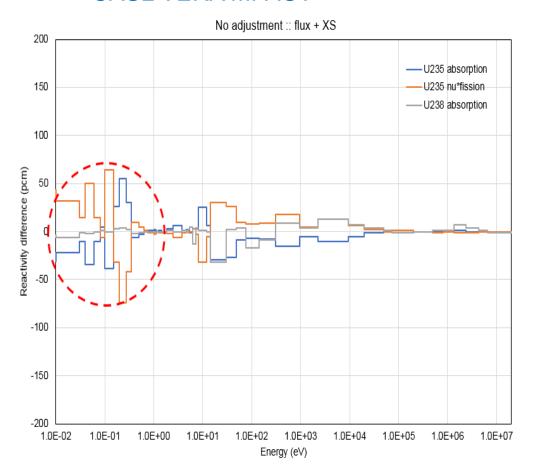


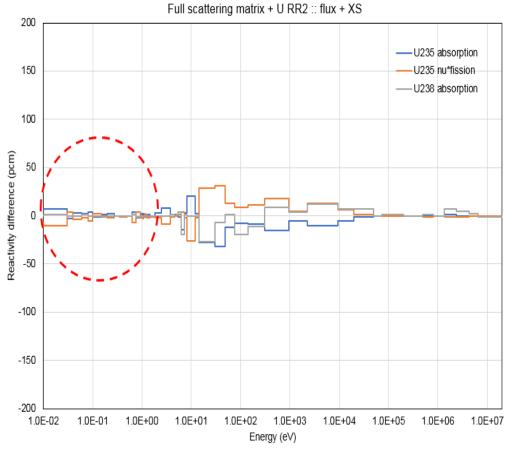



Issue: Thermal Spectrum

Reaction Rate Analysis

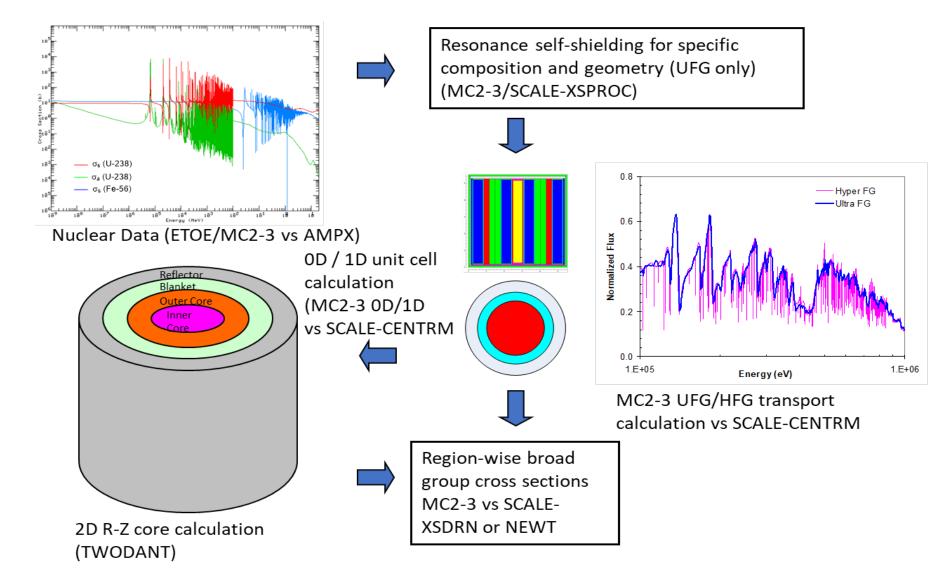
- XSs are fine.
- Scalar fluxes are poor at thermal
- Error cancellation between absorption and v*fission
- Common to deterministic MG transport


Issue: Thermal Spectrum


Resolution

- CE Monte Carlo based P₀ scattering matrices
- SPH factor application

Trial


CASL VERA MPACT

Fast Reactor Analysis Procedure Using AMPX/SCALE

■ AMPX vs. MC²-3

Conclusion

URR Treatment

- AMPX probability table is consistent with NJOY probability table
- AMPX's analytic probability table method is adequate

Group structure

- AMPX/SCALE 252-group + MC² ultra-fine group
- 1597-group structure is adequate for general application

Ongoing Work

- Neutron leakage model for fast reactor application
- Internal energy group collapsing for computational efficiency
- Apply the AMPX library for the Bondarenko approach
 - SCALE-Polaris: Embedded Self-Shielding Method (ESSM)

Pending Issue

- Thermal spectrum & scattering matrix issue in CENTRM
 - Poor thermal spectrum same as other transport codes (resolved)
 - No high order flux moment weighting
 - Energy group structure optimization for memory and speed efficiency

