An Overview of New Monte Carlo Capabilities in SCALE: The Shift Monte Carlo Code

Gregory Davidson

HPC Methods and Applications Team Elliott Biondo Thomas Evans (Team Lead) Steven Hamilton Seth Johnson Tara Pandya

2017 SCALE User's Group Workshop

September 27, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- Radiation transport development at ORNL
- Overall description of the Exnihilo code suite
- Ongoing development efforts in Shift
 - Scalable tallies
 - Hybrid methods
 - Sourcerer
 - Depletion
- Current ongoing work on Shift-SCALE integration
- Shift and CASL'S VERA core simulator

General computational transport methods

Deterministic methods

- Solve the Boltzmann transport equation for average particle behavior in a discretized system
- Produce system-wide solutions with detailed information throughout problem space
- Computationally inexpensive
- Accuracy limited by discretization approximations

Stochastic or "Monte Carlo" methods

- Simulate individual particles and infer average particle behavior from the average behavior of the simulated particles
- Tally results in pre-determined regions of problem space
- Computationally expensive
- Accuracy limited only by the physics, geometry and material approximations used in the simulations

Hybrid methods

- Use fast, approximate deterministic simulations to speed-up highly accurate Monte Carlo simulations
 - Calculate 3D adjoint (importance) and/or forward functions with deterministic simulations
 - Calculate variance reduction parameters based on deterministic solutions (source and weight window parameters)
 - Utilize the variance reduction parameters to focus the Monte Carlo simulation on "important" particles
 - Automate above steps (key to usefulness)
- ORNL holds a strong leadership position in this area signature capabilities

Application-Driven Methods Development

- Research and Development driven by application needs
- Requires close interaction/collaboration with users
 - We have a long history of tightly integrated application development teams
- Motivates the development of methods that enable the solution of problems previously thought impossible

User-developer interaction is an ORNL core strength

Drivers for transport methods development

- Difficult modeling problems in radiation transport generally feature the following:
 - Geometric complexity
 - Deep penetration (large flux gradients)
 - Spectral resolution
 - Global solutions
 - Large distributed sources
- Generally, no single method will provide high-fidelity solutions on problems with these requirements

The Exnihilo Code Suite

- Provide a parallel, component library for transport application development on HPC platforms
- Provide pre- and post-processing tools integrated with *Jupyter notebook*
- Leverage existing functionality from other libraries: **SCALE**, **Trilinos, HDF5**
- Internal GitLab code repository and issue tracking: https://code-int.ornl.gov/exnihilo/Exnihilo

Language	Executable	Test	
C++	247 969	250 840	
Python	29 690	17 460	
С	1 559		
Fortran	936	55	

Denovo: deterministic solvers including S_N and SP_N

Shift: Monte Carlo solver (multiple physics and geometry options)

Insilico: Neutronics front-end for reactor physics (CASL) – employs Shift or Denovo solvers

Denovo Overview (Deterministic solutions for MC acceleration)

- High-performance S_N , SP_N , and MOC solvers on a distributed Cartesian Mesh
 - Mesh is automatically generated on any geometry using Exnihilo's parallel ray tracer
 - Materials are volume-mixed in each Cartesian cell
 - Cross sections are generated using the SCALE XSProc sequence
- Fixed-source and eigenvalue solvers
- Multigroup energy, anisotropic *P_N* scattering
- Forward/Adjoint
- Features parallel decomposition over both spatial domains and energy groups, enabling scaling to O(100k) cores
- GPU-accelerated implementation of S_N (provides ~6x speedup)
- Denovo MOC solver currently used in Polaris

Shift Overview

- Flexible, high-performance Monte Carlo radiation transport *framework*
- Shift is physics agnostic
 - SCALE CE physics
 - SCALE MG physics
- Shift is geometry agnostic
 - SCALE geometry
 - Exnihilo RTK geometry
 - MCNP geometry
 - DagMC-CUBIT CAD geometry
- Fixed-source and eigenvalue solvers
- Integrated with Denovo for hybrid methods
- Multiple parallel decompositions and concurrency models
- Shift is designed to scale from supercomputers to laptops

Shift's Scalable Tallies

- Shift features a high-performance, extensible tally system
 - Tallies are in an object-oriented hierarchy, enabling straightforward implementation of new tallies
- Shift supports a wide range of tallies
 - Reactions
 - Cells/mesh/unions
 - Energy
 - Diagnostic (e.g. source and Shannon entropy)
- The tally system is designed to scale ~O(1) with number of tally cells (as opposed to O(N))
 - Tallies use hash table lookup instead of linear searches over number of tally cells/regions

Hybrid methods make Monte Carlo more efficient

FW-CADIS enables Monte Carlo solutions on problems that were previously considered impossible

How hybrid methods work

Monte Carlo accuracy at deterministic speeds

CADIS and FW-CADIS are 10 – 100,000 more efficient than analog Monte Carlo (measured by FOM)

CADIS

Weight window

$$w = \frac{1}{2}(w_L + w_U)$$

$$w_L = \frac{2\mathcal{R}}{(1+c)\phi^{\dagger}(\mathbf{r}, E)}$$

FW-CADIS

Sourcerer Method

- Concept: Estimate fission source using a low-order solver for an improved initial guess for fission source distribution (i.e., inactive cycles).
- Sourcerer method has been implemented in Exnihilo and is currently being tested.
- Not original to Exnihilo
 - Modeled on the SOURCERER sequence in SCALE
 - Infrequently used due to computational cost of S_N
- Exnihilo implementation is method-agnostic
 - Integrated into all Denovo deterministic methods
 - Only SP_N studied thus far
 - MG Monte Carlo could be used in the future
- **Research Question:** How does the fidelity of the deterministic solution affect performance?
 - SP_N order
 - Cross sections (assumptions for resonance self-shielding)
 - Energy resolution
 - Mesh resolution
 - χ -spectrum (Watt fission vs. material-specific)

Low-fidelity Denovo solution

Shift Depletion Package

- In-memory coupling to ORIGEN-6.2
- Supports Shift's multilevel parallel decomposition
- Features multiple transport-depletion coupling methods:
 - Fully-explicit, middlestep, several predictor/corrector methods
 - Enables accurate solutions with longer timesteps
- Features advanced power normalization methods for accurate constant-power depletion
 - Optional substep-based predictor/corrector power normalization
 - Energy-integrated substep normalization

Exnihilo-Integration into SCALE

✓ Integrated in CSAS sequence

- Eigenvalue mode for criticality safety
- Uses standard Scale geometry, material, and control specifications

Integration in TRITON lattice-physics

- Used as the flux solver for depletion calculations
 - Both CE and MG physics supported
- Calculates nodal tallies for feeding to a nodal solver (PARCS)

□Integration in MAVRIC

- Fixed-source shielding problems using hybrid methods
- Planned for FY18

Integration in Polaris

- CE Flux solutions to Polaris solver
- Planned for FY18

SCALE-Shift Performance

VERA – CASL'S Core Simulator

In-core analysis

- Standard VERA-CS analysis: MPACT, COBRA, ORIGEN
- Validates MPACT neutronics results inline during simulations
- Shift runs on its own MPI communicator
 - VERA-CS can be setup to run on nominal number of cores (O(1000))
 - Shift can utilize remaining computing resource (*O(100K)* on Titan)
 - VERA-CS continues multicycle calculation while Shift executes at state points

VERA – CASL'S Core Simulator

Ex-core analysis

- Fixed-source
 - Uses fission source from VERA-CS
 - Hybrid methods (optional)
- Flux tally in core barrel, core pads, and vessel
- Supplementary general model specification allows user description of more details outside core barrel with user-defined tallies

Questions?

HPC ORNL radiation transport tools

National Laboratory

Software Engineering Practices/QA

Development workflow

- Topic-branch configuration workflow model
- Agile development model
- Continuous integration/testing
 - 782 individually compiled unit-tests run on branch merge
 - Daily regression
 - Weekly tests
 - Performance suite
 - Acceptance (verification) suite
- Master repository *always* works

Documentation

- Code in Doxygen
- Sphinx for user/developer manual
- LaTeX for methods manual
- Issue tracking in GitLab

Ongoing work in Hybrid Methods

- Using SVD to produce optimal separable adjoint fluxes
 - Reduces memory consumption by a factor of 27 for a 27 group library
- Optimized parallel load balancing
- Using GPUs for source discretization

Shift is an application in DOE ASCR Exascale Computing Project

- Use highest resolution models to provide benchmark data sets for multi-cycle SMR operation
 - 10 year target: 2025 operational deployment
- Couple MC neutronics to multiphase CFD
 - Shift-MC (ORNL) + Nek5000 (ANL)
- Demonstrated results at Petascale
 - Coupled multi-cycle simulations are an exascale problem

National Laborator

GPU-Enabled Denovo Sn solver

Denovo Sn solver performance

- GPU sweep is 6.1x faster than CPU sweep
- Total solution time 1.7x faster with GPU

GPU-Enabled Multigroup Monte Carlo (Profugus)

MG Monte Carlo performance:

- K40 GPU is 23.2 CPUequivalent
- P100 GPU is 80.4 CPUequivalent

VERA Execution Modes

In-core analysis

- k-eigenvalue
- Reactor core model completely specified by VERA input
- Automated tallies:
 - Pin powers
 - Shannon entropy

Ex-core analysis

- Fixed-source
 - Uses fission source from VERA-CS
 - Hybrid methods (optional)
- In-core model generated from VERA input
- Supplementary general model specification allows user description of problem outside of core barrel
- User-defined tallies

Summary 3D power distributions

Case	Bank Position (% Inserted)	AO (%)	∆AO (%) MPACT	RMS ∆P (%) MPACT	Max ∆P (%) MPACT
3x3 Reg. B and D	AO, 17% In	-7.5	-0.1	0.4	1.9
Quarter Core	AO, 17% In MD, 66% In MC, 100% In	-8.7	+0.2	0.6	2.6

- Shift generated reference solutions provide benchmarks for VERA-CS
- > HPC scalability of Shift enables the highest resolution possible solutions of 3D LWR cores using OLCF resources (Titan)
- Integration with VERA allows analysts to generate benchmarks from the same inputs and models as production runs

